
1Managed by Triad National Security, LLC., for the U.S. Department of Energy’s NNSA.

Private and Verifiable Model Evaluation  
using Secure Multiparty Computation  
and Zero-knowledge Proofs

Michael Dixon
A-4: Advanced Research in Cyber Systems
Email: mdixon@lanl.gov

(Joint work with Zachary DeStefano and Dani Barrack)
Co-Mentor: Juston Moore

September 13th, 2021

LA-UR-21-28963

mailto:mdixon@lanl.gov


2

Prior Work: Privacy-Preserving and Verifiable Federated 
ML

For FY20 ISTI Novel Compute, we developed an application using zkSNARKs to verify the  
computational integrity of a federated neural network training process without exposing  
sensitive input data or revealing model parameters during classification

Zachary DeStefano, Privacy Preserving, Distributed, and Verifiable Machine Learning for COVID-19 Identification using Zero-Knowledge Proofs, CLSAC 2020,  
https://www.clsac.org/uploads/5/0/6/3/50633811/clsac-2020-destefano.pdf

http://www.clsac.org/uploads/5/0/6/3/50633811/clsac-2020-destefano.pdf


Goal: Verifying Additional Model Qualities

3

Accuracy?

Model Uncertainty?Model C
onfidence?Input Uncertainty?
Sensitivity?

Robustness?

Provable Guarantees
The model training was executed correctly  
No training data tampering occurred

The model was trained on the full dataset
No private data was leaked in the process

Unknowns (not captured in prior work)
NO guarantee that the model performs well
NO quantification of model uncertainty
NO evaluation of risk or regret
NO measure of model robustness



Model Performance and Confusion Matrix

01M0o1

de0l  
10001

011

Annotating current framework with additional metadata regarding tests 
creates  a confusion matrix proven consistent with the model by a ZKP.

4



What about Uncertainty Quantification?

Many approaches to UQ require  
reasoning about randomness, sampling,  
and probabilities

Problem
Non-interactive ZKPs currently only  
capture deterministic computations

Solution Attempt I
Verifier supplies input randomness  
Prover supplies ZKP of computation
NOTE: This becomes fully interactive  
and is not recursively composable Verifier II

Prover Verifier

Potential Collusion!

5



Derandomization, Certainty, and a Goldilocks Solution

Circuit Creation  
Overhead

Intractable
*

(Usually EXPTIME)

... Tractable ... None

Worst Case  
Prover Deception No Error ... 0 < ε < C ... Unbounded

Monte CarloDerandomized Circuit

?
Pseudo-Monte CarloLas Vegas Algorithms

6



Derandomization, Certainty, and a Goldilocks Solution

Monte CarloDerandomized Circuit

Circuit Creation  
Overhead

Intractable
*

(Usually EXPTIME)

... ... None

Worst Case  
Prover Deception No Error ... ... Unbounded

Quasi-Monte Carlo

Pseudo-Monte CarloLas Vegas Algorithms

7



Quasi-Monte Carlo (QMC) and Non-Interactive ZKPs

Quasi-Random
Monte Carlo

8

Quasi-Monte Carlo is the application of quasi-random sequences in place of randomness for  
Monte Carlo algorithms and simulations.
These are cheap ways to provide provable guarantees on the worst case performance of Monte Carlo  
techniques which gives us enough adversarial robustness to apply them to non-interactive
zero-knowledge proof applications



Pseudo-randomness vs Quasi-randomness 
Sequences

Quasi-randomness is low discrepancy, so it provides optimal coverage of  
the space and guaranteed convergence, even in the worst case, making  
it robust enough against malicious provers in the ZKP setting

R(𝜙2) Quasi-Random

9

(2,3) Halton Quasi-RandomPseudo-Random



High-Level zkSNARK Quasi-Monte Carlo 
Architecture

zkQMC Prototype Engine
We developed this engine in C++  
for the rapid prototyping of QMC  
applications in zero-knowledge

Low Level Gadgets

Interface Gadgets

QMC PCD 
Template

Custom Gadgets

Libsnark

# 1 if bond exists, 0 if 
notFUNC BOND u v x 
y | k  SUB u x | dx
FMUL dx dx | 
dxSUB v y | 
dyFMUL dy dy | 
dy  CADD dx 
dy | d  CADD 
d -256 | d
SGN d | k     . . 
.

zkQMC Prover
zkQMC Verifier

Mini-PreprocessorMC Algorithm

PCD Iteration

Results

We pack several  
QMC iterations into  
each PCD iteration  
for performance

10



Demo: Monte Carlo Estimation of π

Monte Carlo “Hello World” in Zero-Knowledge
My first Quasi-Monte Carlo application whose outputs can  
be verified using a zkSNARK estimates the value of π.

A zero-knowledge proof  
that π = 3.133 ± 0.04

4 х green hits  
total trials

11

π ≈

Implementation Details
This QMC specification is 8 short  
lines which are preprocessed into a  
78 line C++ file, and compiled with  
our zkQMC backend
This spec references a variety of  
lower-level fixed point gadgets and  
our library completely handles the  
heavy lifting involved with  
zkSNARKs, PCD, and QMC



12

Demo: Cluster Integration

Cluster Integration in Zero-Knowledge
I implemented the algorithms developed at LANL and detailed in  
Equation of State Calculations by Fast Computing Machines by  
Metropolis, et al. to compute cluster integrals in 2D and 3D in my  
zkQMC framework.

Accurate solutions to high dimensional integrals are vital for handling
intermolecular interactions (top right) in real gas simulations.

To illustrate the complexity of this computation, we have a diagram from  
that paper here (right), and the integral corresponding to A5,9 (below).

Nicholas Metropolis et al., Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics 1953,
https://bayes.wustl.edu/Manual/EquationOfState.pdf

Ideal Real



Demo: Simple Particle Exposure Simulation UQ with 
ZKPs

Room
(Geometry  

Hidden)

We model exposure levels by a toy  
QMC simulation.

Simulated particles with random initial  
velocity are emitted from a source.
They bounce around the room until it  
hits the back wall or times out.

Uncertainty is computed from  
measurements and model

Ex
po

su
re

 C
on

ce
nt

ra
tio

n

13

Exposure Levels by Location

Wall Position
The ZKP (in the QR code on the left) attests to the  
integrity of the UQ results from the QMC simulation



Dependent Type Replacement by ZKPs

14



Type Checking Pipeline using ZKPs

Hard or impossible to prove properties are  
enforced using a ZKP that guarantees that  
data has the proper types or provenance

A simple, custom DSL is compiled down to:
1. Relevant libsnark gadgets
2. Type-level Haskell

Haskell type checker formally verifies type  
safety and correctness of ZKP integration.

A type checker for ZKP gadgets  
will catch bugs at compile time

15

This successfully caught a bug  
in our existing code already!



Accomplishments & Future Work

Accomplishments

● Novel QMC framework with ZKPs
● Integrated with a formal methods pipeline
● ISTI ZKP work featured in 1663
● On-going business development on derivative capabilities

Future Directions

I. Potential applied use for LANL mission-relevant  
applications based on Monte Carlo codes

II. Generalize theoretical derandomization trade-off
III. Include ZKPs of ML, UQ, and QMC capabilities into a  

unified AI decision and optimization framework August 2021 Issue

16



8/30/21 17

Private and Verifiable Model Evaluation using Secure 
Multiparty  Computation and Zero-knowledge 
Proofs Project Description

We extend the current capabilities of non-interactive  
zero-knowledge proofs to assure the integrity of  
Monte Carlo algorithms to enable rich forms of model  
evaluation such as uncertainty quantification. We  
also leverage formal methods to prove software  
correctness and prevent bugs.
Project Outcomes
● Novel QMC framework with ZKPs
● Integrated with a formal methods pipeline
● ISTI ZKP work featured in 1663
● On-going business development on  

derivative capabilities
PI: Michael Dixon
Total Project Budget: $60,000
ISTI Focus Area: Computational & Data Integrity



Backup

18



Prior Work: Privacy-Preserving and 
Verifiable  Federated Machine Learning

010101

00001100
1101
10101001
1101

100011

00T0ra1i0
n1ed

1101M0o1
del

19



A classical proof for “Where’s Waldo?”

Classical Proofs vs. Zero-Knowledge Proofs 
(π)

20

Step 1: Point to Waldo and/or draw a circle around him
Result: This proves that you know where he and reveals his location



Classical Proofs vs. Zero-Knowledge Proofs 
(π)

21

A zero-knowledge proof for “Where’s Waldo?”

Step 1: Cut out a Waldo shaped hole in a large piece of paper
Step 2: Align both papers so that the hole is directly over the location of Waldo
Result: This proves that you know where he is without revealing his location



zkSNARK Construction for Program 
Verification

Computation

Arithmetic  
Circuit

R1CS

QAP

LPCP

LIP

zkSNARK

int myFunction(int a) {  int  
b=a*a-4;  return 3*b+a;

}

S • A * S • B =
S • C1 0 1 0 1 0

a 1 a 1 a 1

t0 0 t0 0 t0 0

b 0 b 0 b 0

t1 0 t1 0 t1 0

Zero-Knowledge 
Added!

22

Succinctness 
Added!

Interactivity  
Removed!

zkSNARKs can be used to  
remotely verify program execution!

This pipeline is just one example of how to  
create a zkSNARK from general computation



zkSNARKs and Proof Carrying Data

Proof Carrying Data (PCD)
There is a technique in cryptography called Proof  
Carrying Data which we can recursively compose  
zkSNARKs, allowing for one to attest to an entire chain  
(or tree) of computations

This zkSNARK, compliance  
predicate, and associated  
witness can be verified or reused  
in another prover at any time

Verifying this package  
verifies all of the  
computations before it

This is particularly useful for  
distributed, iterative, and dynamic  
length computations

An error here would  
propagate through the  
balance of the protocol

Proof + Data

Prover

Proof + DataProof + Data

Prover

23



Project Motivation | Uncertainty in Computation

Zero-Knowledge Proofs are excellent tools for remotely verifying the execution of  
deterministic computation; however, in practice, there is a need to capture computations  
with uncertainties, estimates, and probabilities.

Model

+
Analysis

010101
000101

Data Decision Making

24

Without proper uncertainty quantification, we cannot trust computational analysis to  
inform our decision making, particularly when these computations are influenced by  
malicious adversaries!



25

Monte Carlo (MC) and Non-Interactive ZKPs

Monte Carlo Techniques:
A class of fast algorithms which trade certainty  
for speed and randomness developed at LANL  
for the ENIAC in the 1940s and 50s by  
Metropolis, Ulam, von Neumann, and Teller

Limitations:
Adversarially chosen randomness  
prevents convergence and poisons  
results of Monte Carlo algorithms!

Worst case MC performance has  
an unbounded error!

Random Source
Monte Carlo

Nicholas Metropolis et al., Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics 1953,
https://bayes.wustl.edu/Manual/EquationOfState.pdf



Derandomization and Complexity

Monte Carlo Derandomized Circuit

Adleman’s Theorem
If you can construct a polynomial-sized  
randomized circuit for a problem (with a fixed  
input size), then there exists a polynomial-sized  
deterministic circuit for the same problem

26

Problem I
This transformation can take an exponential  
amount of time, making it not just impractical,  
but generally computationally intractable

Problem II
This transformation can lead to a polynomial  
increase in the size of the circuit making it  
more computationally expensive to execute

This is done by duplicating the original circuit several times
and replacing the randomness with a deterministic “advice” string



Degrees of Scope that ZKPs Capture Properties

1. NIZK proves local property (Proof Replacement)
2. NIZK approximates local property (Prove a less-than-sound  

measurement; limits to amplifiability)
3. Interactive proof system required to prove local property
4. Interactive proof system required to approximate local property
5. Secure multiparty computation required to prove global property
6. Secure multiparty computation required to approximate global  

property
7. SMC + FHE + Global datastructure (Blockchain) required to  

securely evaluate global property
8. Global property cannot be securely computed by any interactive  

protocol without more exotic crypto primitives

In
te

ra
ct

iv
ity

, L
oc

al
ity

27



Key Proofs 1 (Niederreiter, 18)

28



Conclusion

Applying Quasi-Monte Carlo allows non-interactive
zero-knowledge proofs (like zkSNARKs) to soundly capture  
randomized algorithms run by adversarial provers by  
exploiting a cryptographic Goldilocks zone between fully  
randomized and fully derandomized algorithms

The algorithms and techniques designed at LANL for nuclear  
physics, when combined with modern techniques in  
cryptography and complexity, provide a working model for  
robust uncertainty quantification, even in interactions with  
powerful and malicious adversaries

29


