1% Los Alamos

NATIONAL LABORATORY

Private and Verifiable Model Evaluation
using Secure Multiparty Computation
and Zero-knowledge Proofs

Michael Dixon
A-4: Advanced Research in Cyber Systems

Email: mdixon@lanl.gov

(Joint work with Zachary DeStefano and Dani Barrack)
Co-Mentor: Juston Moore

September 13th, 2021 IQTI Information Scienpe
\ & Technology Institute
LA-UR-21-28963 .

il
NA!S"-‘% Managed by Triad National Security, LLC., for the U.S. Department of Energy’s NNSA.

mailto:mdixon@lanl.gov

Prior Work: Privacy-Preserving and Verifiable Federated

&

TN : — iy QY
\ee-lﬁt"'—’ - 0
k -
S N\ @R
BN LT=TE &
=) HE (1%
\. : J

For FY20 ISTI Novel Compute, we developed an application using zkSNARKSs to verify the
computational integrity of a federated neural network training process without exposing
sensitive input data or revealing model parameters during classification

"3 Zachary DeStefano, Privacy Preserving, Distributed, and Verifiable Machine Learning for COVID-19 Identification using Zero-Knowledge Proofs, CLSAC 2020,
<

https://www.clsac.org/uploads/5/0/6/3/50633811/clsac-2020-destefano.pdf 2

http://www.clsac.org/uploads/5/0/6/3/50633811/clsac-2020-destefano.pdf

Goal: Verifying Additional Model Qualities

Provable Guarantees
The model training was executed correctly

No training data tampering occurred

The model was trained on the full dataset
No private data was leaked in the process

o PERZ:
- pEZ
RN

Unknowns (not captured in prior work)
NO guarantee that the model performs well

NO quantification of model uncertainty

NO evaluation of risk or regret

NO measure of model robustness

Model Performance and Confusion Matrix

S
el

(i,
d B ’ AR
eeeeeeeeeeeeeeee ﬁ o
)
o A(V)Lw
def7 ==
100 :J ~
011 ‘;Q;,.

(S, 8

A ..
)i

J TP | N

Annotating current framework with additional metadata regarding tests
creates a confusion matrix proven consistent with the model by a ZKP.

What about Uncertainty Quantification?

Many approaches to UQ require
reasoning about randomness, sampling,
and probabilities

Problem

Non-interactive ZKPs currently only
capture deterministic computations

Solution Attempt |

Verifier supplies input randomness
Prover supplies ZKP of computation

NOTE: This becomes fully interactive
and is not recursively composable

®

Uncertain parameter 1 W

Uncertain parameter 2

Uncertainty
quantification

A

Uncertain parameter 3

Prov erifier

Potential Collusion!

L= (o

Verifier Il

Derandomization, Certainty, and a Goldilocks Solution

- ! Derandomlzeffl CFch|t ! N l (-I Montg Carlo |\
~ ”
| |
” ~
/ \
|
| Las Vegas Algorithms | | Pseudo-Monte Carlo

Circuit Creation | Intractable
Overhead * Tractable None

(Usually EXPTIME)

Worst Case

Prover Deception No Error 0<e<C Unbounded

-

Derandomization, Certainty, and a Goldilocks Solution

- ! Derandomized Circuit ! (I Quasi-Monte Carlo l\ (-I Monte Carlo |\

Circuit Creation | Intractable
Overhead) O d None
(Usually EXPTIME)
d
Worst Case. No Error O M Unbounded
Prover Deception N

®

Quasi-Monte Carlo (QMC) and Non-Interactive ZKPs

Quasi-Monte Carlo is the application of quasi-random sequences in place of randomness for
Monte Carlo algorithms and simulations.

These are cheap ways to provide provable guarantees on the worst case performance of Monte Carlo
techniques which gives us enough adversarial robustness to apply them to non-interactive
zero-knowledge proof applications

Quasi-Random

° e % Yo O at
SeCseleddedes e

L]
R RALAR LX)
00208302

s Mohfe Carlo ~

—
DATA EVALUATION

[

W

°
0%

% o

Pseudo-randomness vs Quasi-randomness

Pseudo-Random R(¢,) Quasi-Random (2,3) Halton Quasi-Random

o‘ °® .0. o‘..:. ...o.‘0..0.00.0O.o. 0.‘.‘ P e 4
l%‘o.z.: .'.0%‘: ;' '.8. 0.. ‘. .0’“'“‘#.. o i .o 0 S .:'.::0.....::. ::.::..:‘..'. N P ‘;' ::;. ..b.':... g .:0'.3":
o0 é‘s.. e~ $.. ". S $ ° .':‘o!". 0’.;..'..{.\ .0‘.0,."‘.. .:....:
° ° ® (] ° - ® Yeg® o (] A ®
XA SN S v e Sore A BT S
s W et g ERY A PN
: .k o ‘.:0' L ,...3 e '. " ..'.‘. . ." ..'.. ®g .".
Lo MLy R N AT R
o e%% w0 o % 0% e’ Po, " of L 00% 2 ot t an %00, e
PR X A R WY AL I AL AP g
... & o ® e I,.:ﬁ '... ~. L] o ¢.~...~. L4 ° ..
o0 "*:’3:. '. :...‘ ‘:'.}o." ..‘ e .'\'.‘:. o0's'o" :.' ..".o ..‘:o
°F ¢ Q) LI °0 g] o ') ‘ 00 og e, 00 g
g0t g s ook, o, ..‘5 '.2' L A ..:..q,':.'. AP N
}.. ‘o.o % %%, .:..:‘: ° s;. o 0:..\“ o, '..o‘..o“"".. < .:,..
R X RN T bt a M g e
200 e .Jo‘ﬁ.' U Wl .‘..."--.“:.f'. ":-.%' '0"":..':-".”:'
ESINGEATE e Ve Mool g e e et s o s Gl e
0 ‘.’..‘.. o »® @ I LI o og0e £o ...5 ®
R R R X I LR A AT A L
s’ o.‘ '~. ¢ - .".‘o ° * o" :.‘0.0 ®, .:' o.. Lo ‘o...'c’.."..‘l:'o"

Quasi-randomness is low discrepancy, so it provides optimal coverage of
the space and guaranteed convergence, even in the worst case, making
it robust enough against malicious provers in the ZKP setting

High-Level zkSNARK Quasi-Monte Carlo

gi MC Algorithm b /-I Mini-Preprocessor |\

1 if bond exists, 0 if
ROINC uvx
i Sea
B vy|
ay/UL dy dy |
dy dx
dy|d
d-256 | d
d|k Y,
We pack several ,
QMC iterations into [PCD iteration |

each PCD iteration
for performance \

/—(zkQMC Prover ’—\

Custom Gadgets

(1\

Interface Gadgets

Low Level Gadgets

QMC PCD

Libsnark

-

J

)

Results
DATA EVALUATION zkQMC Verifier

i)

zkQMC Prototype Engine

We developed this engine in C++
for the rapid prototyping of QMC
applications in zero-knowledge

Demo: Monte Carlo Estimation of 1r

Monte Carlo “Hello World” in Zero-Knowledge

My first Quasi-Monte Carlo application whose outputs can
be verified using a zkSNARK estimates the value of 1.

Implementation Details

This QMC specification is 8 short
lines which are preprocessed into a
78 line C++ file, and compiled with
our zkQMC backend

This spec references a variety of
lower-level fixed point gadgets and
our library completely handles the
heavy lifting involved with '
zkSNARKs, PCD, and QMC A zero-knowledge proof

x X% Xy x

X X | X Xy X o0 X [x X g % | x

Xx X x x X% x
XIPx X x| xXyx| i X X 9 X

X xX x
0 0.2 0.4 0.6 0.8 1

_ 4 x green hits
T~ -
that = 3.133 £ 0.04 total trials

®

Demo: Cluster Integration

Cluster Integration in Zero-Knowledge
| implemented the algorithms developed at LANL and detailed in

Equation of State Calculations by Fast Computing Machines by Q . J/\
Metropolis, et al. to compute cluster integrals in 2D and 3D in my < <\

zkQMC framework.

Accurate solutions to high dimensional integrals are vital for handling

intermolecular interactions (top right) in real gas simulations.

To illustrate the complexity of this computation, we have a diagram from M e e

that paper here (right), and the integral corresponding to Asq (below). Q @ (@) (@, @,
Asg = C/ e /(f14f15f24f25f35)d71 -+ dTs ‘@’ ‘@’ C@’ ‘@ ‘@

Asg Ase" Asi0

F16. 6. Schematic diagrams for the various area integrals.

® Nicholas Metropolis et al., Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics 1953,

‘9 https://bayes.wustl.edu/Manual/EquationOfState.pdf

Demo: Simple Particle Exposure Simulation UQ with

Exposure Levels by Location

0.10
|

Room

(Geometry
Hidden)

0.08
|

0.06
|

We model exposure levels by a toy
QMC simulation.

Simulated particles with random initial
velocity are emitted from a source. g | M_/\W
They bounce around the room until it 7 . | 1 | 1

0.0 0.2 0.8 1.0

hits the back wall or times out. L v(\)/';u positizfn

0.04
|

0.02

Exposure Concentration

Uncertainty is computed from The ZKP (in the QR code on the left) attests to the
measurements and model integrity of the UQ results from the QMC simulation

-

Dependent Type Replacement by ZKPs

Execution Layer Zero-knowledge Layer Setup Layer

IIO
ol
1010 @
Type Venfler

libsnark /
Bellman

Dependent Type Verifier

/
| l
| | 10
| | 111040110000 0011011
| | 3 001001 Joo11100| *** |oo10001
| | 1010111 0101001 1000110
|
| l
I |
|
| 5 5
|
|
|
l : —
/

1001011 1001100

Type Checking Pipeline using ZKPs

Typechecking error in

A simple, custom DSL is compiled down t0: [Pepeassi ey

Let

1. Relevant libsnark gadgets [_intcons0] = -128
[x1] = CADD(x0, intcons0) : [Num]
2. Type-level Haskell [y0] = ISIN(x1) : [Num]

in
[y0]
:while trying to unify input args:
[C NumT,C NumT] and [C BitT,C NumT]

Haskell type checker formally verifies type NumT and BitT do not unify
safety and correctness of ZKP integration.

A type checker for ZKP gadgets
_ _ _ will catch bugs at compile time
Hard or impossible to prove properties are

. This successfully caught a bug
enforced using a ZKP that guarantees that in our existing code already!
data has the proper types or provenance

Accomplishments & Future Work

Accomplishments

Novel QMC framework with ZKPs

Integrated with a formal methods pipeline

ISTI ZKP work featured in 1663

On-going business development on derivative capabilities

Future Directions

|. Potential applied use for LANL mission-relevant W€ 7
applications based on Monte Carlo codes J BOTTERFLY

II. Generalize theoretical derandomization trade-off £ Fimee

1. Include ZKPs of ML, UQ, and QMC capabilities into a

unified Al decision and optimization framework August 2021 Issue

®

Private and Verifiable Model Evaluation using Secure

Los Alamos

AAAAAAAAAAAAAAAAAA

Multiparty Computation and Zero-knowledge

Project Description

We extend the current capabilities of non-interactive
zero-knowledge proofs to assure the integrity of
Monte Carlo algorithms to enable rich forms of model
evaluation such as uncertainty quantification. We
also leverage formal methods to prove software
correctness and prevent bugs.

Project Outcomes

Novel QMC framework with ZKPs
Integrated with a formal methods pipeline
ISTI ZKP work featured in 1663
On-going business development on
derivative capabilities

PI: Michael Dixon

Total Project Budget: $60,000
ISTI Focus Area: Computational & Data Integrity

Backup

Prior Work: Privacy-Preserving and
Verifiable Federated Machine Learning

-—\
=~
\ (S, 18
A D
(%

Classical Proofs vs. Zero-Knowledge Proofs

A classical proof for “Where’s Waldo?”

S S

Step 1: Point to Waldo and/or draw a circle around him
Result: This proves that you know where he and reveals his location

Classical Proofs vs. Zero-Knowledge Proofs

A zero-knowledge proof for “Where’s Waldo?”

Step 1: Cut out a Waldo shaped hole in a large piece of paper
Step 2: Align both papers so that the hole is directly over the location of Waldo
Result: This proves that you know where he is without revealing his location

zkSNARK Construction for Program

zkSNARKS can be used to

. . Computation
remotely verify program execution! |

] int (inta) { int
b=a*a-4; return 3*b+a;

Arithmetic

. Circuit)
SeA S*B =
1| 8l+lC || o 1| o R1CS
(7 A
QAP } Zero-Knowledge
Added!
LPCP Succinctness
Added!
LIP .
{) Interactivity

This pipeline is just one example of how to
create a zkSNARK from general computation

22

zkSNARKSs and Proof Carrying Data

Proof Carrying Data (PCD)

There is a technique in cryptography called Proof This is particularly useful for
Carrying Data which we can recursively compose distributed, iterative, and dynamic
zkSNARKSs, allowing for one to attest to an entire chain length computations

(or tree) of computations

Prover

Prover

| Proof + Data | | Proof + Data |

| Proof + Data |

_ ~ J w v) U y
This zkSNARK, compliance
predicate, and associated

witness can be verified or reused
in another prover at any time

Verifying this package
verifies all of the
computations before it

An error here would
propagate through the
balance of the protocol

-

Project Motivation | Uncertainty in Computation

Zero-Knowledge Proofs are excellent tools for remotely verifying the execution of
deterministic computation; however, in practice, there is a need to capture computations
with uncertainties, estimates, and probabilities.

Decision Making u

DATAEVALUATION

I 010101 i ‘
00010 SRR
VK AT =
- RN R
2 A \)
[} NN
& ARK R
M\,{,“ W \} 'al
AN
AONEK { /
\ S I
il
3 AN 4

Without proper uncertainty quantification, we cannot trust computational analysis to
inform our decision making, particularly when these computations are influenced by
malicious adversaries!

-

Monte Carlo (MC) and Non-Interactive ZKPs

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

M (o] nte C a l'| o Tec h n iq ues: Equation of State Calculations by Fast Computing Machines

Nicuoras MEeTROPOLIS, ARIANNA W, RosenprLuTH, MarsuaLt N. RosenerurH, AND Aucusta H. TELLER,

A CIaSS Of faSt algorithms Wh |Ch trade Ce[’ta['nty Los Alamos Scientific Laboratory, Los Alamos, New Mexico
for speed and randomness developed at LANL Fowao Tsssn,* Depariment of Physics, Univrsty of Chicge, Chicgs,Tinot
(Received March 6, 1953)

for th e E N IAC In th e 1 94OS a n d 5OS by A general method, suitable for fast computing machines, for investigating such properties as equations of

state for substances consisting of interacting individual molecules is described. The method consists of a

M etro pOI iS, U I a m y Von N eu ma n n y and Tel Ier modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere

system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

;T,m{;?v%ﬁ?—vy#? (-I Monte Carlo |\ Limitations:

ol g Erarn Adversarially chosen randomness
prevents convergence and poisons

- results of Monte Carlo algorithms!

AT LL Worst case MC performance has

an unbounded error

p Nicholas Metropolis et al., Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics 1953,

() _
&9 hitps://bayes.wustl.edu/Manual/EquationOfState.pdf

Derandomization and Complexity

Adleman’s Theorem

If you can construct a polynomial-sized |

Derandomized Circuit

SOAN RN

Monte Carlo |\

randomized circuit for a problem (with a fixed
input size), then there exists a polynomial-sized
deterministic circuit for the same problem

This is done by duplicating the original circuit several times
and replacing the randomness with a deterministic “advice” string \&

Problem | Problem I
This transformation can take an exponential This transformation can lead to a polynomial
amount of time, making it not just impractical, increase in the size of the circuit making it

but generally computationally intractable more computationally expensive to execute

Degrees of Scope that ZKPs Capture Properties

NIZK proves local property (Proof Replacement)

NIZK approximates local property (Prove a less-than-sound
measurement; limits to amplifiability)

Interactive proof system required to prove local property
Interactive proof system required to approximate local property

Secure multiparty computation required to prove global property
Secure multiparty computation required to approximate global
property

SMC + FHE + Global datastructure (Blockchain) required to
securely evaluate global property

Global property cannot be securely computed by any interactive

>
=
©
(&
o
-
>
=
=
i
o
©
| S8
(]
i
=

Key Proofs 1 (Niederreiter, 18)

Conclusion

Applying Quasi-Monte Carlo allows non-interactive
zero-knowledge proofs (like zkSNARKSs) to soundly capture
randomized algorithms run by adversarial provers by
exploiting a cryptographic Goldilocks zone between fully
randomized and fully derandomized algorithms

The algorithms and techniques designed at LANL for nuclear
physics, when combined with modern techniques in
cryptography and complexity, provide a working model for
robust uncertainty quantification, even in interactions with
powerful and malicious adversaries

