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Motivation & Goal

* Investigate relationship between explanations and adversarial attacks
- Specifically, focus on concept-based explanations rather than feature attribution

« Intuition: If adversarial attacks are invisible to humans, they should not be
changing concepts related to the definition of the true class

* Most recent hypotheses argue that adversarial attacks are just noise
— |.e., not semantic
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Concept-based Explanations

» Use meaningful high-level concepts rather than independent feature attribution
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Experimental Setup

» Generate adversarial examples for Resnet with Imagenet data:
— Fast Gradient Sign, Projected Gradient Descent, Carlini-Wagner, Momentum lterative

 Build concept discrimination models for concepts relating to common
adversarial output classes

« Compare concept activations between pre-attack images, attacked images,
and true images of the targeted class
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Example attacks

Pre-attack Image Attack Attacked Image
0 0 0
50 A 25
50 1
50
100 A
75 100 1
150 1 §
' 100
200 1 150 A
125
250 A 150 200 A
300 A 175
250 1
200
350 A
0 160 2(')0 3(;0 460 0 50 100 150 200 0 Sb 160 150 260 250
True label: Orange True label: Orange
Predicted: Orange Predicted: Lemon

~
1@ Los Alamos



Example attacks
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Example Attack Directions
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Per-layer Concept Discrimination Models

Yellow Orange
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Train linear model (SVM with linear kernel) to separate concepts from random images.
One linear model trained for each (concept, network layer) pair.
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Results - “Yellow” Concept
Cumulative Distribution Plot, Final Laver
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Results - “Yellow” Concept
Cumulative Distribution Plot, Final Laver
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Results - “Orange” Concept

Cumulative Distribution Plot, Final Layer
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Results - “Orange” Concept

Cumulative Distribution Plot, Final Layer
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Discussion + Future Work

Results suggest that adversarial attacks on non-robust models may be
semantic (and therefore harder to detect)

Re-run experiments with targeted attacks
— Untargeted attacks on Imagenet tend to flip to semantically similar classes

Run similar analysis on more robust models
— We believe attacks may be less semantic and therefore easier to detect

Anomaly detection via p-value fusion across network layers and concepts

Note: Also need for rigorous evaluation and reproducibility of explanations

1% Los Alamos

AAAAAAAAAAAAAAAAAA



Explanations as Defense:

Detectlng Adversarial Inputs to Machine Learning Models
i ] Project Description

We investigate the relationship between
state-of-the-art explainable machine learning
techniques and adversarial attacks, particularly
with respect to leveraging explanations for

dﬁ olect Outcomes

Concept-based explanation techniques can
highlight aspects of data affected by attacks

- Untargeted attacks, regardless of type of attack,
appear to be more semantically meaningful than
previously thought.

- Future work: full characterization of relationship
between explanations and attack types.

PI: Elisabeth (Lissa) Moore, CCS-3, lissa@lanl.gov
Total Project Budget: $45k
ISTI Focus Area: Computational Integrity
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