

Boosting in Deep Semi-supervised Learning with Multi-view Redundant Information

Juan Castorena CCS-3

Student: Steven Wang UCSD

10/13/2021

Problem

Data analysis with machine learning.

Figure 1: Supervised Learning Schematic

- Label scarcity problem in many scientific experimental settings.
 - Data labeling can be time consuming.
 - Can require human expertise.
 - Can be expensive.

Focus

Semi-supervised learning (SSL).

$$\{\boldsymbol{x}_n, \boldsymbol{y}_n\}_{n=1}^{N_1} \qquad \{\boldsymbol{x}_n\}_{n=N_1+1}^{N}$$

exploits both labeled and unlabeled data available.

Explain how semi-supervised learning works in general (overview).

Figure 2: Semi-supervised learning schematic

Imposing constraints in latent representation space.

[1] Tarvainen, Antti, and Harri Valpola. "Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results." arXiv preprint arXiv:1703.01780 (2017).

Problem: Noisy unlabeled data

- Problem of noisy unlabeled examples in SSL
 - Example: A measurement that is negatively correlated with background of a different class.
 - Problematic because we do not have ground truth for unlabeled data points

Figure 3:Noisy unlabeled data

Idea: Leverage Multiview information

- Exploit multi-view information typically available in many scientific applications (with aims to reduce uncertainty).
- Most approaches would use synthetic augmentations.

Figure 4: Axial perspective of COVID-19 infected patient [1].

- Multiview information available in many applications:
 - Biomedical
 - Planetary Science
 - **Materials**
 - Robotics applications.

Idea: Boosting

Boosting: Idea is to either weight or select (sparsity imposed through ℓ_1) training examples adaptively to remove noisy unlabeled examples.

Figure 5: Semi-supervised learning schematic with Boosting

Problem: minimize regret

$$\sum_{t=1}^{T} \mathbf{w}^{t} \boldsymbol{\ell}^{t} - \min_{i} \sum_{t=1}^{T} \ell_{i}^{t}$$
 (1)

- Examples $\{x_n, y_n\}_{n=1}^N$
- $\ell^t = \sum_{n=1}^N d(h_2^t(z_n), y_n)$. where $d: \mathbb{R}^M \times \mathbb{R}^M \to \mathbb{R}$ is a distance
- Weighting or selection of examples \mathbf{w}^t
- Solution Adaboost [1]

[1] Freund, Yoav, and Robert E. Schapire. "A decision-theoretic generalization of on-line learning and an application to boosting." Journal of computer and system sciences 55.1 (1997): 119-139.

Approach: Latent representation

- Idea is to encourage a latent representation that promotes consistency in the representation between views of a CT scan (i.e., slices with same label in a patient) while also promoting inconsistency with representations from slices with other labels.
- Formulated as:

$$\ell = -\sum_{p \in \mathcal{P}} \frac{1}{|\mathcal{P}| - 1} \sum_{p' \in \mathcal{P} \setminus \{p\}} \log \frac{\exp(\langle \mathbf{z}_p, \mathbf{z}_{p'} \rangle)}{\sum_{n \in \mathcal{N}} \exp(\langle \mathbf{z}_p, \mathbf{z}_n \rangle^2)}$$
(2)

- Numerator is a proxy for MI between views that should be consistent
- Denominator is sort of a proxy for MI between views that should be inconsistent.
- Impose structure on latent representation such that representation makes sense to humans (e.g., return a representation that yields the region(s) of anomalies as hot in image space). Looked for neural net architecture, developed a new loss.

[1] Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. "Representation learning with contrastive predictive coding." arXiv preprint arXiv:1807.03748 (2018).

Approach: SSL Architecture

· Architecture: Semi-supervised learning

Figure 7: Schematic of semi-supervised approach.

- Deep neural-nets for latent representations
- Dual frameworks that allow pairwise comparisons between representations of examples.
- Induces some form of competition between dual networks.
- To discriminates anomaly from normal tissue.
- One of the benefits is that it gives some control about what should be similar and what shouldn't.
- Properties of exponential averaging

Experiments

Figure 6: Examples of COVID-19, CAP and non-infected CT slices.

Dataset [1]:

- 2021 ICASSP COVID19 Challenge.
 - Task: Classify CT scans into COVID19, Community acquired pneumonia (CAP) and normal.
 - Experienced thoracic radiologists provided slice level labels for a small subset of the training set (i.e., 4990/46000) and also rRT-PCR test labels where provided for each patient (307 patients).
 - Training 307, validation 98, test1, test2, test3, test4 disjoint CT scans.
 - CT scans acquired by different scanners in multiple medical centers, using different settings for slice thickness, and exposure time.

[1] Afshar, P., Heidarian, S., Enshaei, N. et al. COVID-CT-MD, COVID-19 computed tomography scan dataset applicable in machine learning and deep learning. Sci Data 8, 121 (2021). https://doi.org/10.1038/s41597-021-00900-3

Experiments

- Trained the network module to learn latent representation only with labeled CT slices data
- Trained the SSL dual neural net to refine representation now also including labeled/unlabeled CT slices batches.
- After several epochs we trained linear head independently (freezing latent representation networks) using only labeled examples.
- Preliminary performance was evaluated in the 4 test sets.
- All experiments were performed on Darwin using PyTorch.

Preliminary Results

Table 1: Performance comparison

	Baseline [1]	Labeled only (ours)	Labeled/Unlab eled (ours)
Partition	Acc	Acc	Acc
test1	0.867	0.919	0.945
test2	0.911	0.946	0.968
test3	0.867	0.930	0.971
test4	0.833	0.902	0.913

$$Acc = \frac{\sum_{i} C_{i,i}}{\sum_{i,j} C_{i,j}}$$

[1] S. Xue and C. Abhayaratne, "Covid-19 Diagnostic Using 3d Deep Transfer Learning for Classification of Volumetric Computerised Tomography Chest Scans," ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 8573-8577, doi: 10.1109/ICASSP39728.2021.9414947.

Conclusion

- What we completed...
 - Learning latent representations labeled data.
 - Developed an objective function for learning.
 - Representation is interpretable
 - Dual framework for labeled/unlabeled
- Working on...
 - Boosting

END

Boosting in Deep Semi-supervised Learning with Multi-view Redudant Information

Figure 1: Schematic of semi-supervised approach.

Project Description:

- Our work addresses the problems of label scarcity by leveraging labeled/unlabeled multi-view observations.

Project Outcomes:

- A framework leveraging labeled/unlabeled and multi-view data to extract latent representations.
- Implementation of the proposed approach
- Working on summarizing our work in a manuscript for IEEE ICASSP due Oct 2, 2021.

PI: Juan Castorena

Total Project Budget: 60K

ISTI Focus Area: Computational and Data Integrity

