Thermal Transistor for Energy Smart Buildings

LA-UR-15-22359

This document is approved for public release; further dissemination unlimited
Thermal Transistor for Energy Smart Buildings

Thin-film heat switch creates thermally active walls to enable energy-efficient buildings

BACKGROUND & MOTIVATION

The thermal properties of building walls are fixed by design

- They cannot adapt to daily or seasonal temperature variations
- These shortcomings require inefficient heating / cooling of inside air

INNOVATION

LANL Innovation: Thermal Transistor

Thin-film device that can change its thermal conductivity by >50 fold:
- Made from non-toxic low-cost materials that are commercially available
- Low power consumption: ~0.5 W/sq.ft.
- Insulating: 0.06 W/K-m (fleece fabric)
- Conducting: ~3 W/K-m (near metal)

DESCRIPTION

Concept: Thermally active building walls
- Add a thermal transistors to building walls to enable agile heat management
- Realize significant cost savings and reduction of greenhouse gases
- Thermal transistors fabricated in the form of large sheets that are integrated with conventional construction materials.
- System enables a building that can adapt to thermal changes in the environment by exploiting natural temperature gradients

How it works:
- Applying a voltage to the control electrodes induces motion in the fluid and allows for efficient heat transport by convection. The fluid is static without a voltage and only minimally conducts heat.

Assumptions & Limitations:
- Current LANL prototype: ~50 cm² active area. Assume it can be scaled to sq.ft size relevant for applications
- Switching requires ~200 Volts but only draws a few µA. The associated drive electronics comprises only off-the-shelf components.

Current Technology Readiness Level (TRL) 4
- Individual components have been tested and a system level prototype has been tested and integrated in the lab

ANTICIPATED IMPACT

Thermally adaptive devices and systems may be a game changer in energy efficiency, buildings and beyond:
- Thermally agile walls can enable significant cost savings and reduce greenhouse gases (high volume market)
- Potential for flexible format that could be used in thermally active clothing (high volume market)
- Thermal transistors can find applications in the thermal management of high-performance computers
- LANL is currently developing thermal transistor technology for application on satellite platforms

PATH FORWARD

Demonstrate thermal transistor tile with 1 sq.ft. area:
- Quantitative thermal and electrical characterization
- Tested under applicable environmental conditions
- IP protected and industrial partner identified.
- Cost model for mass production

Potential End Users:
- Construction companies (commercial and residential)

Point of Contact:
Alex Mueller,
Chemistry Division, Chemical Diagnostics & Engineering, 505-665-1737, Hehlen@lanl.gov

UNCLASSIFIED