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1 Introduction

There is a vast literature devoted to the question of deciding whether a contin-
gency table with modest numbers of counts, say something like

Co || C4
fo 7 12
fols| s (1)

totals || 15 15

shows a significant difference between a control sample Cy and a diagnosed
sample C with respect to some feature or test with values fyo and f;. The mod-
est count values require so-called “exact” (as opposed to asymptotic) methods;
Agresti[1] surveys the (generally frequentist) literature.

The standard approach for a table like Table (1) is:

1. Choose a test statistic that quantifies the discrepancy with the null hy-
pothesis that there is no association between (Cy, C1) and (fo, f1). Popular
choices are the Wald statistic and Rao’s efficient score statistic.

2. Choose a method, for example “Fisher’s exact test” or “Barnard’s exact
test”. The choice of a method is equivalent to choosing a population of
2 x 2 tables against which to compare Table (1).

3. Compute the one-sided p-value, that is, the probability of finding in the
population defined by the method a value of the test as extreme as that
seen.

4. Reject the null hypothesis (no association) if p < 0.05 (say).



Within this paradigm, the single most popular (and therefore most standard)
set of choices is probably Fisher’s exact test with the Wald statistic.

There are widely recognized weaknesses in steps 1, 2, and 4 in this paradigm;
only step 3 seems objectively above reproach!

Step 1 is open to the usual criticism of p-tests, namely that different choices
of statistic can give quite different tail probabilities for a given data set. In
practice, however, the differences are rarely large. The issue is common to all
p-tests and therefore conveniently swept under the rug.

Step 4 is open to the criticism that, for small numbers of counts, p may
take on well-spaced discrete values. Requiring p < 0.05 may be excessively
conservative if consecutive discrete values lie at (say) 0.051 and 0.01. The
inevitable advice given (and rarely followed) is to focus on the p value, and not
the accept/reject decision.

Step 3 is by far the most problematic. The issue is that the null hypothesis
contains an unknown parameter 7y, the common probability of seeing fo under
both Cy and (. Fisher’s exact test eliminates 7y by fixing a row marginal at
its observed value (e.g., 19 in Table 1), and thus compares Table 1 only to the
population of tables having all marginals identical to Table 1. Barnard’s exact
test instead chooses a specific value of 7y, essentially its maximum likelihood
value given the observed data. (A clear pedagogical discussion is in [2].) The
problem with any such choice is that, absent clairvoyance, it inevitably assumes
a wrong value for my. Thus the p-values are not tail probabilities of the test
statistic for the actual experiment, but only uncontrolled approximations. In
no sense is it true that the null hypothesis will be incorrectly rejected only 1
time in 20.

For the counts in Table (1), using the Wald statistic, the Fisher exact test
gives p = 0.0641, while the Barnard exact test gives p = 0.0341.[2] While
the frequentist literature delights in disecting this kind of small difference, our
interest here is in the more fundamental question of whether an association is
established with anything like the implied signficance of these methods.

2 Comparing Hypotheses

In what follows, we will frequently use a basic Bayesian technique for comparing
two hypotheses that are competing as possible explanations of a data set, by the
ratio of their likelihoods (or, in more Bayesian terminology, their probabilities).

Suppose two hypotheses are H 4 and Hp, and the data is D. Further suppose
that H 4 has ny parameters, which we take as a vector A4 and that Hg has npg



parameters Ag. Then we write (see, e.g., [3]),

prob(Ha|D)  prob(D|H,) _ prob(Hp,)
prob(Hp|D) ~ prob(D|Hp) ~ prob(Hp)
[ prob(D,Aa|H) d"4 X " prob(H 4) @)
~ [ prob(D,Ag|Hg) d"sX "~ prob(Hp)
[ prob(D|H 4, Aa) prob(Aa|H4) d™ X " prob(H )
J prob(D|Hp, A) prob(Ag|Hp) d"®X = prob(Hp)

Here d™# )\ signifies integration over all of H4’s parameters, and similarly for
Hp. Absent other information, we might in some cases take the ratio of prior
probabilities for the two hypotheses, prob(H 4)/prob(Hpg), as unity, if we have
no reason to favor one hypothesis over the other; but we might in other cases
take the ratio to be a small number, especially if H4 is just one of many pos-
sible hypotheses that we are testing, each one unlikely by itself. Within each
hypothesis, we also need prior probabilities on its parameters A, an issue that
we address below.

An important special case of equation (2) is where H4 and Hp differ only
in that one of them (Hp, say) requires one or more constraints among its pa-
rameters Ag. An example might be requiring the equality of two of the \’s,
say A; and A;. For this example, and with the assumption on priors already
mentioned, equation (2) becomes

prob(H 4| D) [ prob(D|Ha,A4) prob(As|Ha) d™4 X

prob(Hg|D) - J prob(D|Hp, A) prob(Ag|Hp) d(Xi — \;) d*B ) ®)

where § is a Dirac delta function. That is, we integrate over the allowed space
of parameters.

3 Contingency Tables of Probabilities

In situations of interest, we often have a set of mutually exclusive diagnoses or
conditions, denoted C,Cs, ..., and also the absence of any of the diagnoses —
that is, the control group — which we denote Cy. Each diagnosis is a column in
a contingency table.

We are also given a set of (again mutually exclusive) feature vector values,
fo, fi, f2, ..., that characterize individuals in all the condition groups. By fea-
ture vector, we mean the aggregate of results of all the test results or genetic
markers under study. For example, if each test is either positive (denoted 1)
or negative (denoted 0), and if there are 6 tests, then there are 26 f’s, labeled
in binary as fo00000,- - -, fi11111. In other words, the f’s maximally deaggregate
the tested groups, just as the C’s maximally deaggregate the diagnoses.

In principle, if we had an infinite population, we could assign probabilities
pij to each of the f;’s under each column Cj, giving a table like



Co || Ci | Cy

fo || poo || Po1 | Po2

f1 Pio || P11 | P12

f2 D20 || P21 | P22

The p;;’s in each column sum to 1, by their definition.
If an undiagnosed patient presents with feature vector f;, then the odds that
he/she has a particular condition C; are, from equation (2),

prob(C;|f;) _ prob(f;|C;) “ prob(C})
prob(Colfi)  prob(fi|Co)  prob(Co) (5)
_ Pij , prob(Cj)
pio  prob(Ch)

The ratio of priors is, essentially, the incidence of C; in the population at large.
The ratio p;j/pio is the “evidence odds ratio”, which we will often just call
the odds ratio. A main goal of this note is to estimate such odds ratios in a
meaningful way.

An important point is that, for realistic situations, there should be many
instances where p;; is almost exactly equal to p;o, meaning that the feature f;
has virtually no predictive value in diagnosing condition C;. We say “almost”
and “virtually” merely to cover a debater’s possible objection that “everything is
causally related to everything, at least in some tiny high-order way”. In practical
situations, such high-order correlations vanish so rapidly that it is meaningful
to classify p;;’s as either equal to the control population’s p;o or different from
it. What makes this assertion not tautological is that it will lead us to assign
a finite prior probability to the case of “equal”, sometimes approaching unity.
In other words, “equal” is not a set of measure zero in this application, but is
indeed often the (prior) most likely case, since we expect most features studied
to prove irrelevant to most diagnoses.

One may well worry that with maximally deaggregated multiple tests and
multiple diagnoses, the number of individuals in any single box in equation (4)
will be so small that no meaningful p;; can be estimated. That is precisely
the subject of the rest of this note. The framework that we develop will (i)
give meaningful estimates of whether p;;’s should be classified as “different”
(having predictive value) or “equal” (having no predictive value), (ii) estimate
the resulting odds ratios, taking into account the possibility of having small
numbers of counts, and (iii) provide a methodology for comparing more- or



less-aggregated hypothesis spaces, so that features and/or diagnoses will be
aggregated in such a way as to provide odds ratios with themselves a high
probability of being meaningful.

4 Contingency Tables of Counts and the Poisson
Assumption

A given experiment yields, of course, counts n;;, not probabilities p;;:

Co Cci | Cy
fo Noo No1 | No2
fl n1o ni1 | N2
6
f2 n2o T21 | N22 ( )

totals no ni n.o

Here n;; is the number of counts with feature vector f; and diagnosis C;, while
n; denotes the marginals by diagnosis, that is, the number of patients studied
with each condition C; (including the control group Cj).

We next assume an independent Poisson model for the number of counts n;;
in each box. That is, n;; is assumed to be drawn from an independent Poisson
distribution with (its own) rate parameter \;;,

n;j ~ Poisson();;)
o, ™

1

T(ng +1) 9 °

prob(nij|/\ij) =
Since much will follow from this assumption, a few words on its validity are in
order.

The Poisson distribution is the limiting form of a binomial or multinomial
process when the probability of selection is small. Furthermore, and more in-
terestingly, once a finite sample has been selected via an independent Poisson
process, any subdivision of it into subsamples by a binomial or multinomial pro-
cess (that is, with probabilities summing to unity) produces subsamples that are
not only Poisson distributed, but independently Poisson distributed. This fol-
lows from the fact that any such subsample could have been identically drawn
from the original population by applying the compound selection criterion from



the start; the winnowing into sample and then subsample is purely procedural
and does not affect the outcome.

Thus, if we can identify a Poisson process anywhere “above” a single count
n;;, it will follow that n;; itself is independently Poisson. In many studies, the
covering Poisson process is inherent in the experimental design: Criteria for
patient or control group participation are established, and all individuals who
“walk in the door” meeting these criteria (and other implicit criteria, such as
being aware of the study) are accepted.

Next best, even if a study accepts a predetermined number of patients over-
all, the column marginals n ; may be accurately enough Poisson if the number
of patients with each diagnosis is not fixed a priori.

Next best after that, even if the experimental design fixes the column marginals
a priori, independent Poisson will still be an adequate approximation as long as
all the ratios n;;/n; are small, i.e., there are many features with comparable
probabilities.

Finally, although independent Poisson is a computational convenience, a
number of our results are actually more general and follow in the case of a
multinomial distribution as well. To summarize: assuming independent Poisson
counts is not likely to get us into trouble!

An important fact about independent Poisson processes is that any sum of
their deviates is itself Poisson, and drawn from a process whose rate is the sum
of the individual rates. This property allows us to aggregate cells at will by
summing their counts and A’s, and we use it often below.

Given a cell with counts n (we drop the subscripts when they are not rele-
vant), the probability distribution of the underlying X is given by

prob(A|n) o« prob(n|A) prob(A) (8)

As always, we need a prior, in this case prob(\). Two natural priors, each
scale-free in a certain way, are the uniform prior,

prob(A) oc dA 9)
and the log-uniform prior
prob(\) o % (10)

(Both of these are improper, in the sense of being not integrable, but this will
never matter in the calculations below.)

One way of distinguishing between these (or any other) priors, is to see what
they predict for the mean number of counts (n) in a cell whose observed number
of counts is n. Since the mean of a Poisson process with rate A is equal to A,
we need just calculate

J° X prob(n|)) prob(A)dA

(n) = /OOO X prob(Ajn)dx = 20

~ JJ¥ prob(n|A) prob(X)dA (n

The integrals are straightforward, and give the result n + 1 in the case of the
uniform prior and n in the case of the log-uniform prior.



While the log-uniform prior thus seems “unbiased”, its choice has rather se-
vere consequences for any cell with observed n = 0. The fact that the mean (n)
is then also zero implies that, with a log-uniform prior, a zero cell may never
take on a nonzero count. Clearly this is unreasonable, as is any prior that gives
zero probability to a case that can actually occur. We therefore adopt as our
standard the uniform prior which, on average, credits every cell with one extra
count that was not (yet) seen. This is a conservative assumption, in that it
tends to nudge cases with small numbers of counts towards the (uninformative)
uniform distribution. (One could of course consider other priors with interme-
diate behavior, for example A~'/2; the effect on any of our results would be
slight.)

With a uniform prior on A, the normalized density prob(A|n) is

prob(A|n) = ﬁ)\”e*)‘ (12)

5 Probability from Counts

Let us focus attention on a single cell and its column marginal, namely,

G

fl ... n
(13)

totals || -+ | N

The probability distribution associated with this pattern of data is the joint
distribution of two \’s, one for the observed n, and the other for the observed
N —n as the sum of all the other independent Poisson cells in the column. We
denote the two rates A,, and Ay_,. Their joint distribution, from equation (12),
and the fact they are independent, is

O I)F(IN Y A AN N T exp(— A —AN—n)dAndAN—n

(14)
The reason that we write the differentials d\,dAn—, explicitly, is that we now
want to change variables as follows:

prob(Ap, AN—pn|n, N) =

An = pA

>\N—n = (1 _p)>‘ (15)

Although equation (15) is just a definition, it has the obvious interpretation
that A is the rate parameter characteristic of the whole column, while p is the



probability associated with the single cell of interest within the column. The
Jacobian determinant is easily evaluated,

OAn OAn
B(An,/\an) — D 3N — ‘ A P ‘ - (16)
a(p’ )\) Bkévp_n BAéVA—n -\ 1-— p
giving
1

prob(p, Ajn, N) = (pX)"[(1 = P)AIY " exp(=A) A dAdp

(17)

The parameter A is a nuisance variable, since it merely parameterizes the to-

tal number of counts in the column, an artifact of the experiment. We therefore
integrate it out, giving

Cin+ 1)T(N —n+1)

prob(pln, N) = / prob(p, Aln, N)dA = [B(n + 1, N —n + 1)]"'p"(1 - p)¥~"dp

(18)
One can readily verify that equation (18) is properly normalized, i.e.,

/ prob(p|n, N)dp = 1 (19)

Equation (18) would also follow from assuming a multinomial process in each
column, with a uniform prior prob(p) = 1, instead of our Poisson assumption.
Indeed, with either assumption, one can derive that the joint probability of any
number of cells in a single column is Dirichlet-distributed,
N iy iy

(20)

prob(p1, p2, ... |n1,ne,...) X pytpy* x- - x(1=—p1—pa—---)

6 Equality of a Probability to the Control Group

We now generalize from the table (13) to

Co |- |

fi m n
(21)

totals || M || --- | N

where the counts m and marginal M are for the control group. We want to
compare the two hypotheses H 4, that the probability implied by m and M is



different from that implied by n and N, and Hpg, that the two probabilities

are equal. The general scheme is that of equation (??), with the delta-function
constrant pg = px.

prob(H4|D) [B(m+1,M —m + ]t o1 —po)M™dpo[B(n + 1, N —n +1)]* [pr(1 —p) N
prob(Hg|D) [B(m +1,M —m +1)]7}[B(n + 1,N —n +1)]7! [ pm+n(1 — pyM+N-—m=ngp
Bm4+n+1,M+N-m-n+1

:B(m+1,M—m+1)B(n+1,N—n+1)

(22)
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