next up previous
Next: Momentum Conservation Up: Main Equation Set Previous: Mass Conservation

Energy Conservation

Mixture of Gases Internal Energy:
\bgroup\color{blue}$\displaystyle {\frac{{\partial}}{{\partial t}}}$\egroup\bgroup\color{blue}$\displaystyle \left(\vphantom{ \alpha_m \rho_m U_m }\right.$\egroup\bgroup\color{blue}$\displaystyle \alpha_{m}^{}$\egroup\bgroup\color{blue}$\displaystyle \rho_{m}^{}$\egroupUm\bgroup\color{blue}$\displaystyle \left.\vphantom{ \alpha_m \rho_m U_m }\right)$\egroup + \bgroup\color{red}$\displaystyle {\frac{{\partial}}{{\partial z}}}$\egroup\bgroup\color{red}$\displaystyle \left(\vphantom{ \alpha_m \rho_m U_m V_m }\right.$\egroup\bgroup\color{red}$\displaystyle \alpha_{m}^{}$\egroup\bgroup\color{red}$\displaystyle \rho_{m}^{}$\egroupUmVm\bgroup\color{red}$\displaystyle \left.\vphantom{ \alpha_m \rho_m U_m V_m }\right)$\egroup = - Pm\bgroup\color[rgb]{.9,.8,0}$\displaystyle \left(\vphantom{ \frac{\partial}{\part...
...
\textcolor[rgb]{.9,.8,0}{\frac{\partial \alpha_m}{\partial t}} }\right.$\egroup\bgroup\color[rgb]{.9,.8,0}$\displaystyle {\frac{{\partial}}{{\partial z}}}$\egroup\bgroup\color[rgb]{.9,.8,0}$\displaystyle \left(\vphantom{ \alpha_m V_m }\right.$\egroup\bgroup\color[rgb]{.9,.8,0}$\displaystyle \alpha_{m}^{}$\egroupVm\bgroup\color[rgb]{.9,.8,0}$\displaystyle \left.\vphantom{ \alpha_m V_m }\right)$\egroup + \bgroup\color[rgb]{.9,.8,0}$\displaystyle {\frac{{\partial \alpha_m}}{{\partial t}}}$\egroup\bgroup\color[rgb]{.9,.8,0}$\displaystyle \left.\vphantom{ \frac{\partial}{\part...
...
\textcolor[rgb]{.9,.8,0}{\frac{\partial \alpha_m}{\partial t}} }\right)$\egroup + \bgroup\color{cyan}$\displaystyle {\frac{{\partial}}{{\partial z}}}$\egroup\bgroup\color{cyan}$\displaystyle \left(\vphantom{ \alpha_m k_m \frac{\partial T_m}{\partial z} }\right.$\egroup\bgroup\color{cyan}$\displaystyle \alpha_{m}^{}$\egroupkm\bgroup\color{cyan}$\displaystyle {\frac{{\partial T_m}}{{\partial z}}}$\egroup\bgroup\color{cyan}$\displaystyle \left.\vphantom{ \alpha_m k_m \frac{\partial T_m}{\partial z} }\right)$\egroup
    + \bgroup\color{green}$\displaystyle {\frac{{\partial}}{{\partial z}}}$\egroup\bgroup\color{green}$\displaystyle \left(\vphantom{ \alpha_m D_n^X \left( h_n-h_g \right) \frac{\partial X_n}{\partial z} }\right.$\egroup\bgroup\color{green}$\displaystyle \alpha_{m}^{}$\egroupDnX\bgroup\color{green}$\displaystyle \left(\vphantom{ h_n-h_g }\right.$\egrouphn - hg\bgroup\color{green}$\displaystyle \left.\vphantom{ h_n-h_g }\right)$\egroup\bgroup\color{green}$\displaystyle {\frac{{\partial X_n}}{{\partial z}}}$\egroup\bgroup\color{green}$\displaystyle \left.\vphantom{ \alpha_m D_n^X \left( h_n-h_g \right) \frac{\partial X_n}{\partial z} }\right)$\egroup + \bgroup\color{green}$\displaystyle {\frac{{\partial}}{{\partial z}}}$\egroup\bgroup\color{green}$\displaystyle \left(\vphantom{ \alpha_m D_n^\rho \left( h_n-h_g \right) \frac{\partial \rho_m}{\partial z} }\right.$\egroup\bgroup\color{green}$\displaystyle \alpha_{m}^{}$\egroupDn\bgroup\color{green}$\scriptstyle \rho$\egroup\bgroup\color{green}$\displaystyle \left(\vphantom{ h_n-h_g }\right.$\egrouphn - hg\bgroup\color{green}$\displaystyle \left.\vphantom{ h_n-h_g }\right)$\egroup\bgroup\color{green}$\displaystyle {\frac{{\partial \rho_m}}{{\partial z}}}$\egroup\bgroup\color{green}$\displaystyle \left.\vphantom{ \alpha_m D_n^\rho \left( h_n-h_g \right) \frac{\partial \rho_m}{\partial z} }\right)$\egroup + \bgroup\color{magenta}$\displaystyle \sum_{{x=l,s}}^{}$\egroup\bgroup\color{magenta}$\displaystyle \left(\vphantom{ Q_{xm} + Q^\Gamma_{xg} }\right.$\egroupQxm + Q\bgroup\color{magenta}$\scriptstyle \Gamma$\egroupxg\bgroup\color{magenta}$\displaystyle \left.\vphantom{ Q_{xm} + Q^\Gamma_{xg} }\right)$\egroup  

Liquid Internal Energy:
\bgroup\color{blue}$\displaystyle \epsilon_{v}^{}$\egroup\bgroup\color{blue}$\displaystyle {\frac{{\partial}}{{\partial t}}}$\egroup\bgroup\color{blue}$\displaystyle \left(\vphantom{ \alpha_l\rho_l U_l }\right.$\egroup\bgroup\color{blue}$\displaystyle \alpha_{l}^{}$\egroup\bgroup\color{blue}$\displaystyle \rho_{l}^{}$\egroupUl\bgroup\color{blue}$\displaystyle \left.\vphantom{ \alpha_l\rho_l U_l }\right)$\egroup + \bgroup\color{red}$\displaystyle \epsilon_{v}^{}$\egroup\bgroup\color{red}$\displaystyle {\frac{{\partial}}{{\partial z}}}$\egroup\bgroup\color{red}$\displaystyle \left(\vphantom{ \alpha_l\rho_l U_l V_l }\right.$\egroup\bgroup\color{red}$\displaystyle \alpha_{l}^{}$\egroup\bgroup\color{red}$\displaystyle \rho_{l}^{}$\egroupUlVl\bgroup\color{red}$\displaystyle \left.\vphantom{ \alpha_l\rho_l U_l V_l }\right)$\egroup = - \bgroup\color[rgb]{.9,.8,0}$\displaystyle \epsilon_{v}^{}$\egroupPl\bgroup\color[rgb]{.9,.8,0}$\displaystyle \left(\vphantom{ \frac{\partial \alpha...
...
\textcolor[rgb]{.9,.8,0}{\frac{\partial \alpha_l}{\partial t}} }\right.$\egroup\bgroup\color[rgb]{.9,.8,0}$\displaystyle {\frac{{\partial \alpha_l V_l}}{{\partial z}}}$\egroup + \bgroup\color[rgb]{.9,.8,0}$\displaystyle {\frac{{\partial \alpha_l}}{{\partial t}}}$\egroup\bgroup\color[rgb]{.9,.8,0}$\displaystyle \left.\vphantom{ \frac{\partial \alpha...
...
\textcolor[rgb]{.9,.8,0}{\frac{\partial \alpha_l}{\partial t}} }\right)$\egroup + \bgroup\color{cyan}$\displaystyle \epsilon_{v}^{}$\egroup\bgroup\color{cyan}$\displaystyle {\frac{{\partial}}{{\partial z}}}$\egroup\bgroup\color{cyan}$\displaystyle \left(\vphantom{ \alpha_l k_l \frac{\partial T_l}{\partial z} }\right.$\egroup\bgroup\color{cyan}$\displaystyle \alpha_{l}^{}$\egroupkl\bgroup\color{cyan}$\displaystyle {\frac{{\partial T_l}}{{\partial z}}}$\egroup\bgroup\color{cyan}$\displaystyle \left.\vphantom{ \alpha_l k_l \frac{\partial T_l}{\partial z} }\right)$\egroup  
    + \bgroup\color{magenta}$\displaystyle \sum_{{x=m,s,w}}^{}$\egroupQxl + \bgroup\color{magenta}$\displaystyle \sum_{{x=g,s}}^{}$\egroupQxl\bgroup\color{magenta}$\scriptstyle \Gamma$\egroup  

Solid Internal Energy:

\bgroup\color{blue}$\displaystyle \epsilon_{v}^{}$\egroup\bgroup\color{blue}$\displaystyle {\frac{{\partial}}{{\partial t}}}$\egroup\bgroup\color{blue}$\displaystyle \left(\vphantom{ \alpha_s\rho_s U_s }\right.$\egroup\bgroup\color{blue}$\displaystyle \alpha_{s}^{}$\egroup\bgroup\color{blue}$\displaystyle \rho_{s}^{}$\egroupUs\bgroup\color{blue}$\displaystyle \left.\vphantom{ \alpha_s\rho_s U_s }\right)$\egroup = \bgroup\color{cyan}$\displaystyle \epsilon_{v}^{}$\egroup\bgroup\color{cyan}$\displaystyle {\frac{{\partial}}{{\partial z}}}$\egroup\bgroup\color{cyan}$\displaystyle \left(\vphantom{ \alpha_s k_s \frac{\partial T_s}{\partial z} }\right.$\egroup\bgroup\color{cyan}$\displaystyle \alpha_{s}^{}$\egroupks\bgroup\color{cyan}$\displaystyle {\frac{{\partial T_s}}{{\partial z}}}$\egroup\bgroup\color{cyan}$\displaystyle \left.\vphantom{ \alpha_s k_s \frac{\partial T_s}{\partial z} }\right)$\egroup + \bgroup\color{magenta}$\displaystyle \sum_{{x=m,l,w}}^{}$\egroupQxs + \bgroup\color{magenta}$\displaystyle \sum_{{x=g,l}}^{}$\egroupQxs\bgroup\color{magenta}$\scriptstyle \Gamma$\egroup

Wall Internal Energy:

\bgroup\color{blue}$\displaystyle \rho_{w}^{}$\egroupcpw\bgroup\color{blue}$\displaystyle {\frac{{\partial T_w}}{{\partial t}}}$\egroup = \bgroup\color{cyan}$\displaystyle {\frac{{\partial}}{{\partial z}}}$\egroup\bgroup\color{cyan}$\displaystyle \left(\vphantom{ \alpha_w k_w \frac{\partial T_w}{\partial z} }\right.$\egroup\bgroup\color{cyan}$\displaystyle \alpha_{w}^{}$\egroupkw\bgroup\color{cyan}$\displaystyle {\frac{{\partial T_w}}{{\partial z}}}$\egroup\bgroup\color{cyan}$\displaystyle \left.\vphantom{ \alpha_w k_w \frac{\partial T_w}{\partial z} }\right)$\egroup + Qin + \bgroup\color{magenta}$\displaystyle \sum_{{x=l,s}}^{}$\egroupQxw


next up previous
Next: Momentum Conservation Up: Main Equation Set Previous: Mass Conservation
Michael L. Hall