next up previous
Next: Later Modifications Up: Main Equation Set Previous: Momentum Conservation

Constitutive Equations


Mixture State: Pm = $ \rho_{m}^{}$Tm$ \left(\vphantom{ X_n R_n+\left( 1-X_n \right) R_g }\right.$XnRn + $ \left(\vphantom{ 1-X_n }\right.$1 - Xn$ \left.\vphantom{ 1-X_n }\right)$Rg$ \left.\vphantom{ X_n R_n+\left( 1-X_n \right) R_g }\right)$
Liquid State: $ \rho_{l}^{}$ = $ \rho_{l}^{}$$ \left(\vphantom{ P_l,T_l }\right.$Pl, Tl$ \left.\vphantom{ P_l,T_l }\right)$
Solid State: $ \rho_{s}^{}$ = $ \rho_{s}^{}$$ \left(\vphantom{ T_s }\right.$Ts$ \left.\vphantom{ T_s }\right)$
Volume Fraction Sum: $ \sum_{{x=m,l,s}}^{}$    $ \alpha_{x}^{}$ = 1
Capillary Pressure Relation: Pm - Pl = $ \mathcal {L}$$ \left(\vphantom{ \Delta P_{cap} \left( \alpha_m \right) }\right.$$ \Delta$Pcap$ \left(\vphantom{ \alpha_m }\right.$$ \alpha_{m}^{}$$ \left.\vphantom{ \alpha_m }\right)$$ \left.\vphantom{ \Delta P_{cap} \left( \alpha_m \right) }\right)$

Grand total of 15 equations, 15 unknowns at each node.

System variables are:
$ \rho_{m}^{}$ , $ \rho_{l}^{}$ , $ \rho_{s}^{}$ , $X_n $ , $ \alpha_{m}^{}$ ,$ \alpha_{l}^{}$ , $ \alpha_{s}^{}$ , $P_m $ , $P_l $ , $V_m $ , $V_l $ , $T_m $ , $T_l $ , $T_s $ and $T_w $ .

The interphase transfer terms ( $\textcolor{magenta}{\Gamma_{xy}}$ , $\textcolor{magenta}{Q_{xy}} $ , $\textcolor{magenta}{Q_{xy}^\Gamma}$ ) are all functions of $ \rho_{m}^{}$, Xn, Tm, Tl, Ts , and Tw and are defined implicitly in the Radial Model.


next up previous
Next: Later Modifications Up: Main Equation Set Previous: Momentum Conservation
Michael L. Hall