Next: About this document ...
Up: Morel99a
Previous: Appendix
- 1
- J. E. Morel, Randy M. Roberts, and Mikhail J. Shashkov, ``A Local
Support-Operators Diffusion Discretization Scheme for Quadrilateral r - z
Meshes,''
J. Comput. Phys., 144, 17 (1998).
- 2
- O. C. Zienkiewicz, The Finite Element Method, McGraw-Hill, London,
3rd Edition (1977).
- 3
- G. C. Pomraning, Equations of Radiation Hydrodynamics, Volume 54
of the International Series of Monographs in Natural Philosophy, Edited by D. ter
Haar, Pergamon Press, New York, (1973).
- 4
- A. I. Shestakov, J. A. Harte, and D. S. Kershaw,``Solution of the
Diffusion Equation by Finite Elements in Lagrangian Hydrodynamics Codes,'' J.
Comp. Phys., 76, 385 (1988).
- 5
- Milton E. Rose, ``Compact Volume Methods for the Diffusion Equation,''
J. Sci. Comput., 4, 261 (1989).
- 6
- Todd Arbogast, Clint N. Dawson, Philip T. Keenan, Mary F. Wheeler, and
Ivan Yotov, ``Enhanced Cell-Centered Finite Differences for Elliptic Equations on
General Geometry,'' SIAM J. Sci. Comput., 18, 1 (1997).
- 7
- Gene H. Golub and Charles F. Van Loan, Matrix Computations,
second edition, The Johns Hopkins University Press, Baltimore, (1989).
- 8
- M. J. Shashkov and S. Steinberg, ``Solving Diffusion Equations with
Rough Coefficients in Rough Grids,'' J. Comput. Phys., 129, 383 (1996).
- 9
- Robert D. Richtmyer and K. W. Morton, Difference Methods for
Initial-Value Problems, Interscience Publishers, New York (1967).
- 10
- A. Weiser and M. F. Wheeler, ``On Convergence of Block-Centered Finite
Differences for Elliptic Problems,'' SIAM J. Numer. Anal., 25, 351 (1988).
- 11
- J. E. Dendy, Jr., ``Black Box Multigrid,'' J. Comput. Phys. 48, 366 (1982).
- 12
- J. Stoer and R. Bulirsch, Introduction to Numerical Analysis,
Springer-Verlag, New York, (1980).
- 13
- D. S. Kershaw, ``Differencing of the Diffusion Equation in
Lagrangian Hydrodynamics Codes,'' J. Comput. Phys., 39, 375 (1981).
- 14
- J. E. Dendy, Jr., ``Two Multigrid Methods for Three-Dimensional
Problems with Discontinuous and Anisotropic Coefficients,'' SIAM Sci. Stat.
Comp., 8, 673 (1987).
Michael L. Hall