next up previous
Next: Hexahedral Support Operator Method Up: Preliminaries Previous: Diffusion Equation Set

Discretization Strategy

Cell-Center Equations - Integrate the Diffusion Equation over a cell, and temporally discretize via Backwards Euler:

$\displaystyle \alpha^{n}_{}$$\displaystyle {\frac{{\left( \Phi^{n+1} - \Phi^n \right)}}{{\Delta t}}}$Vc + $\displaystyle \sum_{f}^{}$\bgroup\color{red}$\displaystyle \mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{F_{c,f}^{n+1}}$}$\egroup . \bgroup\color{red}$\displaystyle \mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{A_{c,f}}$}$\egroup

+  $\displaystyle \sigma_{c}^{n}$$\displaystyle \Phi_{c}^{{n+1}}$Vc = ScnVc

Face Equations - Flux continuity at every face:

\bgroup\color{red}$\displaystyle \mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{F_{c1,f1}^{n+1}}$}$\egroup . \bgroup\color{red}$\displaystyle \mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{A_{c1,f1}}$}$\egroup = - \bgroup\color{red}$\displaystyle \mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{F_{c2,f2}^{n+1}}$}$\egroup . \bgroup\color{red}$\displaystyle \mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{A_{c2,f2}}$}$\egroup

Boundary Face Equations - Robin condition:

$\displaystyle \beta^{1}_{c}$$\displaystyle \Phi_{{c,f}}^{}$ - $\displaystyle \beta^{2}_{c}$\bgroup\color{red}$\displaystyle \mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{F_{c,f}^{n+1}}$}$\egroup . \bgroup\color{red}$\displaystyle \mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{A_{c,f}}$}$\egroup = \bgroup\color{red}$\displaystyle \beta^{3}_{c}$\egroup\bgroup\color{red}$\displaystyle \Phi_{{b}}^{}$\egroup

Note that:

Unknowns for $ \Phi$ are located at the cell centers and the cell faces. Cell Equations will involve these seven unknowns:

\includegraphics[angle=-90,scale=.6]{/home/hall/Caesar/documents/images/Augustus/celleq.ps}

Face Equations will involve the thirteen unknowns from two adjacent cells:

\includegraphics[angle=-90,scale=.6]{/home/hall/Caesar/documents/images/Augustus/faceeq.ps}
This gives a local stencil in terms of cell-center and cell-face unknowns.

The \bgroup\color{red}$ \mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{F_{c,f}^{n+1}}$}$\egroup . \bgroup\color{red}$ \mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{A_{c,f}}$}$\egroup terms, on each face of a cell, must still be defined in terms of the $ \Phi$ 's within that cell.


next up previous
Next: Hexahedral Support Operator Method Up: Preliminaries Previous: Diffusion Equation Set
Michael L. Hall