... by1
The standard seven-point diffusion operator does not account for a flux source term, $ \mbox{$\stackrel{^{\mathstrut}\smash{\longrightarrow}}{J}$}$, so that is omitted from the current discussion.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... faces.2
In general, for multiple dimensions the scheme has $ \left(\vphantom{ \left( n_d +1 \right) n_c + n_b/2 }\right.$$ \left(\vphantom{ n_d +1 }\right.$nd + 1$ \left.\vphantom{ n_d +1 }\right)$nc + nb/2$ \left.\vphantom{ \left( n_d +1 \right) n_c + n_b/2 }\right)$ unknowns, where nd is the number of dimensions.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... quartic3
The method is exact for linear solutions, so no improvement is achieved by refining the mesh in that situation.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.