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A method for extending traditional plasma transport theories into the strong coupling regime is

presented. Like traditional theories, this is based on a binary scattering approximation, but where

physics associated with many body correlations is included through the use of an effective interaction

potential. The latter is simply related to the pair-distribution function. Modeling many body effects in

this manner can extend traditional plasma theory to orders of magnitude stronger coupling. Theoretical

predictions are tested against molecular dynamics simulations for electron-ion temperature relaxation as

well as diffusion in one component systems. Emphasis is placed on the connection with traditional

plasma theory, where it is stressed that the effective potential concept has precedence through the

manner in which screening is imposed. The extension to strong coupling requires accounting for

correlations in addition to screening. Limitations of this approach in the presence of strong caging are

also discussed. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4875282]

I. INTRODUCTION

A central problem in the theory of strongly coupled plas-

mas is to describe how the many body physics of correlations

affects transport properties. Traditional plasmas are so hot

and dilute that the average particle kinetic energy greatly

exceeds the potential energy of interaction. In this weakly

coupled regime, interactions are long range, and Coulomb

collisions are accurately modeled as a series of small-angle

binary scattering events.1 In contrast, the interaction poten-

tial energy exceeds the average particle kinetic energy in

strongly coupled plasmas, so theory must account for both

large angle collisions and many-body correlations. We

recently proposed a method for extending the binary colli-

sion picture to strong coupling by accounting for correlations

through an effective interaction potential.2 In the present pa-

per, this approach is developed further by detailing aspects

of the analysis that were not included in the previous publi-

cation and by drawing connections with weakly coupled

plasma theory.

This physically intuitive approach provides a practical

means of extending the most commonly applied transport

theories to stronger coupling. It may find application in ultra-

cold plasmas,3 dense plasmas,4,5 and dusty plasmas6 where

strong coupling effects can influence transport. It is espe-

cially advantageous for modeling systems in which the cou-

pling strength can vary from weak to strong because it fits

naturally within the framework of the Chapman-Enskog7,8 or

Grad9,10 methods, providing the transport coefficients that

the macroscopic fluid descriptions require as input. The plas-

mas of interest are often multicomponent systems exhibiting

a wide range of parameters. Fluid simulations typically

demand that calls to routines providing transport coefficients

be fast, such as a table lookup or evaluation of a closed-form

equation. One approach is to build tables or best fit curves

based on many ab-initio simulations, but this quickly

becomes impractical for multicomponent plasmas when a

large parameter space is required. Alternatively, approximate

theories can be sought that balance accuracy and computa-

tional expense, while also providing insight into the physical

processes at play. Along these lines, we explore the extent to

which the conventional binary scattering picture can be

extended by using an effective interaction potential that

includes correlation physics.

The idea of imposing an effective interaction potential is

not new. In fact, the approximation is used in traditional

plasma theory as well, albeit in an indirect manner. Landau’s

seminal collision operator1 is based on a binary scattering

picture where particles interact via their bare Coulomb inter-

action. However, this neglects the effect of screening and

leads to an unphysical divergence. The effective potential

concept is tacitly applied when screening is imposed through

setting the maximum impact parameter to be the Debye

length. The screened Coulomb (Debye-H€uckel) potential has

also been applied, but this does not include correlation

effects that are important at strong coupling.11–15 In addition

to our previous work on fluid transport,2 recent computations

of single particle stopping power have successfully included

correlation effects using an effective potential concept.16

The bulk of previous theoretical approaches either focus

on deriving collision operators based on new closures of the

BBGKY hierarchy17–19 or calculate transport properties

from higher-order equilibrium correlation functions.20,21 A

popular approach to deriving new collision operators is to

generalize the dielectric response function to include correla-

tion physics through a local field correction. In this work, we

take a different approach. We apply the standard Boltzmann

collision operator with the only modification being the inter-

action force. To include correlation effects in this force, we

a)Paper NI3 5, Bull. Am. Phys. Soc. 58, 192 (2013).
b)Invited speaker.
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draw on much previous work in the area of higher-order

equilibrium correlation functions, including the concept of

the potential of mean force and its connection with the pair

distribution function [g(r)], as well as the hypernetted-chain

(HNC) approximation.20,22 By equating the effective interac-

tion potential with the potential of mean force, a closed set

of equations is obtained from the HNC calculation of g(r).

Although we focus on classical HNC in this work, any other

approximation for g(r) could also be applied. For example,

pair correlation functions in dense plasmas also require

accounting for the quantum nature of electrons.23 Utilizing

the equilibrium relationship between g(r) and the potential

of mean force, the input to the theory becomes g(r).

In practice, evaluating transport coefficients using the

effective potential theory consists of three steps. First the

interaction potential must be specified. In this work, we

obtain a model for the effective potential using the HNC

approximation (Sec. III), but any other means could also be

applied. Second, this potential is used to calculate the input

functions for the transport theory. For the Chapman-Enskog

or Grad equations in particular, this requires solving three

imbedded integrals [Eqs. (5), (8), and (10)] for the scattering

angle, momentum-transfer cross-section, and X-integrals.

Third, the X-integrals provide the input for calculating vari-

ous transport coefficients in these theories. These are typi-

cally evaluated as functions of the coupling strength

C ¼ e2Z2=ðakBTÞ, where a ¼ ð3=4pnÞ1=3
is the inter-particle

spacing. We provide the theoretical description in general

terms valid for multicomponent systems, but apply it only to

the specific system of a classical one-component plasma

(OCP) in this paper.

This paper is organized as follows. The basic transport

models are discussed in Sec. II. Application to Chapman-

Enskog and Grad theories is emphasized where the various

transport coefficients are determined from a matrix of integral

relations called the X-integrals. Section III discusses how the

interaction potential is obtained from equilibrium properties

of the BBGKY hierarchy and the HNC approximation.

Section IV discusses numerical evaluation of the X-integrals.

Section V shows a comparison between the calculation and

molecular dynamics (MD) simulations for diffusion in OCP,

and the electron-ion temperature relaxation rate. Limitations

of the theory and possible extensions are discussed in Sec. VI.

II. TRANSPORT MODELS

We start from the binary collision approximation, which

is the basis of the Boltzmann collision operator8

Cs�s0

B ¼
ð

d3v0dX rss0u½fsðv̂Þfs0 ðv̂0Þ � fsðvÞfs0 ðv0Þ�; (1)

where ðv; v0Þ are the initial velocities of colliding particles

and ðv̂; v̂0Þ are the post-collision velocities (s and s0 denote

species). Here, u ¼ v� v0 is the relative velocity vector

(u ¼ juj), rss0 is the differential scattering cross section, and

dX ¼ d/dh sin h is the solid angle. Equation (1) provides the

basis for kinetic and transport theories in a variety of disci-

plines. The input is the differential scattering cross section,

which is commonly determined by classical dynamics once

the interaction force is specified. One difficulty in applying

Eq. (1) is the dependence on the distribution functions eval-

uated at the post-collision velocities (v̂; v̂0). In traditional

plasma physics, this is circumvented by applying the small

scattering angle expansion: v̂ ¼ vþ Dv, where Dv� v. This

expansion leads to the familiar plasma collision operators of

the Landau1 or Fokker-Planck24 forms. Transport theories,

such as Braginskii’s,25 are formulated by expanding the result-

ant weakly coupled collision operator about equilibrium.

The small scattering angle expansion is not viable for

strongly coupled plasmas because scattering angles are large

in these systems. Although the full Boltzmann collision oper-

ator must be dealt with at the kinetic level, transport coeffi-

cients for fluid equations are determined from velocity

moments of the form hvis�s0 ¼
Ð

d3vvsðvÞCs�s0
B , where vs are

velocity-dependent functions related to continuity, momen-

tum, energy, etc. (ms;msv;msv2;…). For the Boltzmann col-

lision operator, symmetry properties of the binary scattering

process can be exploited to write these integrals in a form

where the post-collision velocity vectors come outside of the

distribution functions15

hvis�s0 ¼
ð

d3vd3v0fDvsgfsðvÞfs0 ðv0Þ: (2)

Here, fDvsg ¼
Ð

dX rss0uDvs and Dvs ¼ vsðv̂Þ � vsðvÞ.
Transport coefficients of the form in Eq. (2) are simplified

by applying conservation laws to write Dvs in terms of v and

v0. For instance, the momentum equation in multi-fluid descrip-

tions depends on the friction force density Rs�s0 ¼ hmsvis�s0
.

Applying conservation of momentum to Eq. (2) leads to15

Rs�s0 ¼ mss0

ð
d3u fDug

ð
d3v0 fsðuþ v0Þfs0 ðv0Þ; (3)

where Du ¼ u½sin h cos /x̂ þ sin h sin /ŷ � 2 sin2ðh=2Þû�.
Likewise, the energy conservation equation relies on the

energy exchange density Qs�s0 ¼ h1
2

msv2i � Vs � Rs�s0 .

Applying conservation of energy to Eq. (2) provides15

Qs�s0 ¼ mss0

ð
d3u fDug � Iu; (4)

where Iu ¼
Ð

d3v0ðv0 � Vþ mss0u=ms0 Þfsðuþ v0Þfs0 ðv0Þ and

mss0 ¼ msms0=ðms þ ms0 Þ is the reduced mass.

Evaluating these transport coefficients requires a scatter-

ing cross section and a model for the distribution functions.

For the scattering cross section, it is convenient to write the

fDvsg integrals in terms of the impact parameter b and the

scattering angle h ¼ p� 2H by applying the substitution

dXrss0 ¼ bdbd/. The scattering angle is determined from

the elementary classical dynamics of two particles s and s0

interacting through a central force �r/ss0 , which provides

H ¼ b

ð1
ro

dr r�2 1� b2

r2
� 2/ss0 ðrÞ

mss0u2

� ��1=2

: (5)

Here, ro is the distance of closest approach, which is deter-

mined from the largest root of the denominator in Eq. (5).
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The general formulation of Eqs. (2)–(5) applies to any

model for the distribution functions, but the most com-

monly applied model is a perturbation about equilibrium.

For instance, the transport coefficients in Grad’s moment

method can be derived by applying this expansion to Eqs.

(3) and (4) and similar higher-order moments.9,10 The

resulting transport coefficients can be written in terms of

integrals of the form

Xðl;kÞss0 ¼
ffiffiffi
p
p

�vss0

ð1
0

dnn2kþ3e�n2

ðp

0

dhrss0 sinhð1� cosl hÞ; (6)

in which n ¼ u=�vss0 , �v2
ss0 ¼ v2

Ts þ v2
Ts0 , and v2

Ts ¼ 2Ts=ms. For

example, the 13 N moment form of Grad’s equations is pro-

vided in terms of X-integrals in Zhdanov.10 Alternatively,

the Chapman-Enskog approach also specifies various trans-

port coefficients, such as diffusivity, conductivity, and vis-

cosity, in terms of X-integrals.7,8 We focus on calculating

the X integrals from the effective potential as these provide

the input to these theories.

To facilitate the connection with weakly coupled plasma

theory, the X-integrals can alternatively be written in the

form

Xðl;kÞss0 ¼
3

16

ms

mss0

�ss0

ns0

Nðl;kÞss0

Nss0
; (7)

where

Nðl;kÞss0 ¼
1

2

ð1
0

dn n2kþ3e�n2

�rðlÞss0=ro (8)

is a “generalized Coulomb logarithm” associated with the

ðl; kÞth collision integral. We apply this name in this context

because Nð1;1Þ ! lnK and Nðl;kÞ=Nð1;1Þ ! constants (inde-

pendent of K) in the weakly coupled limit. Here,

�ss0 �
16

ffiffiffi
p
p

q2
s q2

s0ns0

3msmss0�v3
ss0

Nss0 (9)

is a reference collision frequency

�rðlÞss0 ¼ 2p
ð1

0

db b½1� coslðp� 2HÞ� (10)

is the lth momentum-transfer cross section, and ro ¼ ðpq2
s q2

s0 Þ=
ðm2

ss0�v
4
ss0 Þ is a reference cross section.

The only input to these equations is the interaction

potential energy /ss0 ðrÞ. Our approach uses an effective

potential that self-consistently includes screening and corre-

lation physics. Section III discusses a theoretical basis for

this potential and a means of calculating it.

III. EFFECTIVE INTERACTION POTENTIAL

For convenience, in this section, we consider a one-

component system and drop the subscripts s; s0 denoting the

species. However, the arguments can be generalized to mul-

ticomponent systems.

A. Potential of mean force

In this section, we establish a connection between the

effective interaction potential energy /ðrÞ (hereinafter

referred to as the “effective potential” for brevity) and the

pair distribution function g(r). The pair distribution function

is related to the probability, qð2Þðr; r0Þdrdr0, of finding two

particles of the system in an elementary volume element

drdr0 around ðr; r0Þ, irrespective of the positions of the other

particles and irrespective of all velocities, with

qð2Þðr; r0Þ ¼
�XN

i¼1

XN

j¼1;j 6¼i

dðr� riÞdðr0 � rjÞ
�

eq

¼ NðN � 1Þ
Z

ð
e�U=kBTdr3…drN : (11)

Here, Z �
Ð

expð�U=kBTÞdrN is the configurational integral

and U �
P

i;j vðjri � rjjÞ, where v is the bare interaction

potential energy.22 For a homogeneous and isotropic system,

such as considered in this paper, qð2Þðr; r0Þ is a function only

of the separation jr� r0j. The pair distribution function is

defined as

n2gðrÞ ¼ qð2ÞðrÞ; (12)

where the thermodynamic limit is implicitly understood.

Physically, ng(r) represents an average radial density distri-

bution around individual particles. For illustration, Fig. 1

shows g(r) for a OCP at different coupling strengths. At

strong coupling, density oscillations are produced by nearest

neighbor particles: the number of particles lying within the

distance r to rþ dr from a given particle is 4pr2ngðrÞdr and

the peaks in g(r) represent shells of neighbors around that

particle. At weak coupling, the local density around a refer-

ence particle is everywhere equal to its average n, i.e.,

gðrÞ ¼ 1, except in its immediate neighborhood due to the

strong inter-particle Coulomb repulsion.

The pair distribution function can be related to an inter-

action potential using Eq. (11). In particular, if we define /
by

FIG. 1. Pair distribution function for a OCP obtained from MD (circles),

HNC (solid lines), screened Coulomb potential (dashed lines), and the cutoff

Coulomb potential (dashed-dotted lines—shown only for C ¼ 0:1 and 1).
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gðrÞ ¼ exp½�/ðrÞ=kBT�; (13)

Eq. (11) can be written in the form22

�r/ ¼

ð
e�U=kBTð�r1UÞdr3…drNð

e�U=kBTdr3…drN

: (14)

Thus, we see that the force (�r/) in this relationship is

that acting on particle 1, taking particles 1 and 2 held at

fixed positions (r1 and r2) and averaging over the positions

of all other particles. This is precisely what is desired for

considering the binary collision between particles 1 and 2,

accounting for average effects of the medium. Thus, we

equate this so-called “potential of mean force” / with the

effective interaction potential and use Eq. (13) to relate this

to the pair distribution function. A variety of techniques

have been developed to approximate g(r) under various

conditions. In Sec. III B, we will consider the HNC

approximation.

However, we first remark that while plasma kinetic the-

ories do not typically make explicit reference to a pair distri-

bution function, one is nevertheless implicit in each theory.

In order to draw a connection with these traditional theories,

consider the second equation of BBGKY for a classical one-

component plasma

@g2ð1; 2Þ
@t

¼ L0
1 þ L0

2

� �
g2ð1; 2Þ þ L12f ð1Þf ð2Þ (15a)

þL12g2ð1; 2Þ; (15b)

þ
ð

d3 L13f ð1Þg2ð2; 3Þ þ L13f ð3Þg2ð1; 2Þ þ ð1$ 2Þ½ � (15c)

þ
ð

d3ðL13 þ L23Þg3ð1; 2; 3Þ; (15d)

in which L0
i ¼�

pi

m �ri, Li;j¼rvðjri� rjjÞ � @=@pi�@=@pj

	 

,

f is the distribution function at time t, gn is the n-particle cor-

relation function at time t, and 1¼ðr1;p1Þ. The usual plasma

kinetic theories (namely, the Landau,1 the Boltzmann,8 and

the Lenard-Balescu26 equations) can be obtained by neglect-

ing certain terms in Eqs. (15) in order to close the infinite hi-

erarchy of equations between the gn’s.19,27 These closures

rely on a systematic ordering of the correlations gn¼OðamÞ
(m integer) in terms of an adequately chosen small parameter

a. The resulting equation for g2 is then solved analytically in

terms of f and the solution is introduced in the first BBGKY

equation to derive a kinetic equation for f that is of second

order in a; additional hypotheses are made27 to produce a

tractable equation, in particular, the “Markovianization” of

the collision operator. For our purposes, it is instructive to

consider the equilibrium limit of the approximate equation

for g2 obtained by setting @tg2ð1;2Þ¼ 0. The solution is

related to the pair-distribution function

geq
2 ð1; 2Þ ¼ n2fMðp1ÞfMðp2Þ½gðjr1 � r2jÞ � 1�; (16)

where fM is a Maxwellian.

The Boltzmann equation describes dilute neutral gases

with an arbitrarily strong interaction potential. In this case,

the expansion parameter is a ¼ nl3
C, where n is the particle

density and lC is the correlation length (assumed finite), and

the Boltzmann closure is obtained by neglecting (15c) and

(15d). Here, lC represents the maximum value of the range of

the correlation function gn;, e.g., if jr1 � r2j > lC, then

gnðr1; r2;…; rnÞ ¼ 0. The equilibrium limit of this closure

provides Eq. (16) with

gðrÞ ¼ e�vðrÞ=kBT Boltzmann: (17)

Not surprisingly, the g(r) of the Boltzmann closure equals

the Boltzmann factor as would be obtained by looking at the

density around an impurity in an ideal gas: the potential of

mean-force equals the bare potential, / ¼ v.

The Landau closure is valid for weakly coupled systems

and a is the dimensionless strength of the potential;

vðrÞ ¼ a�vðrÞ, where �vðrÞ is dimensionless of Oð1Þ for all r.

It is obtained by neglecting terms (15b)–(15d) in Eq. (15). In

the equilibrium limit, we find

gðrÞ ¼ 1� vðrÞ=kBT Landau: (18)

This corresponds to the Boltzmann factor in the high-

temperature limit vðrÞ=kBT � 1.

Finally, the Lenard-Balescu-Guernsey equation26 is an

equation for weakly coupled plasmas in which the collisional

interactions occur via an effective, dynamically screened

potential. The parameter a is the particle charge q2 together

with the condition that nq2 remains finite.26,27 This is satis-

fied whenever the coupling strength is small

q2n1=3=kBT � 1; then the closure neglects (15b) and (15d).

The term (15b) kept in the Lenard-Balescu equation but

dropped in the Boltzmann equation allows for the renormali-

zation of the bare Coulomb interaction into a dynamically

screened two-body interaction between the particles of the

plasma. In the equilibrium limit, this provides Eq. (16) with

gðrÞ ¼ 1� vscðrÞ=kBT Lenard-Balescu; (19)

where vsc ¼ q2e�r=kD=r is the screened Coulomb (Debye-

H€uckel) potential. Equation (19) can be regarded as

an approximation of Eq. (13) with effective potential

/ðrÞ ¼ vscðrÞ in the limit /ðrÞ=kBT � 1. In contrast, the

contribution (15c) kept in the Boltzmann approximation but

discarded in the Lenard-Balescu equation, is responsible for

the bare two-particle interactions (large-angle scattering)

describing close encounters in a dilute gas. A common way

to extend the Lenard-Balescu approach is to modify the

dielectric response function to account for close interaction

physics using a local field correction obtained, in part, from

g(r).17,18,28

The traditional plasma closures neglect the correlation

functions gn with n � 3 [term (15d)], which is inappropriate

when many-body correlations are moderate or strong. Their

extension to the moderately and strongly coupled regimes

confronts the full complexity of the many-body problem.

Both from the practical and the physical standpoint, it would
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be quite useful to develop a kinetic theory that retains the de-

sirable properties of the Boltzmann equation, whereby par-

ticles interact via an effective binary potential that integrates

the average effects of the surrounding medium on the bare

interactions. While progress has been made over the years to

tackle this formidable problem (e.g., see Ref. 19), the state-

of-the-art solutions are still not tractable for practical calcu-

lations yet. In the present work, instead of deriving a kinetic

equation from first principles and calculating the resulting

transport properties, we phenomenologically include correla-

tion and screening physics in the conventional binary scatter-

ing picture. The binary collision picture phenomenology

leads to a Boltzmann collision operator without necessarily

specifying the interaction force, outside of the requirement

that it be central and conservative.8 We use the HNC approx-

imation to calculate accurate pair-distribution functions g(r)

that include both screening and correlation effects self-

consistently. For a given g(r), we obtain the effective poten-

tial /ðrÞ according to Eq. (13) and use the results of Sec. II

to calculate the transport properties. As we will see, this

approach reduces to the popular approximations discussed

above in the appropriate limits. In addition, it avoids the

unphysical divergences encountered when one naively uses

the bare Coulomb potential in the collision integrals, and it

takes proper account of the correlated collisions characteris-

tic of strongly coupled systems.

B. Calculating the effective potential from HNC

Section III A established a relationship between the

effective interaction potential and the pair distribution func-

tion [Eq. (13)]. Thus, any theory or experiment that provides

g(r) also provides the input for the effective potential theory.

In practice, of course, it is desirable to use an approximation

that does not rely on computationally expensive simulations.

Here, we consider the HNC closure as an approximation for

obtaining a g(r) that includes correlation physics.

HNC is a well-established model for the one-component

plasma. As described in detail in Ref. 20, it can be derived

from equilibrium statistical mechanics using advanced per-

turbative methods, or from density functional theory. In this

approximation, g(r) is determined from the coupled set of

equations20

gðrÞ ¼ exp½�vðrÞ=kBT þ hðrÞ � cðrÞ�; (20a)

ĥðkÞ ¼ ĉðkÞ½1þ nĥðkÞ� ; (20b)

where hðrÞ ¼ gðrÞ � 1 is the pair-correlation function and

ĥðkÞ denotes the Fourier transform of hðrÞ. Equation (20b) is

an exact relation known as the Ornstein-Zernike (OZ)

relation. Equations (20a) and (20b) can be efficiently solved

iteratively starting from a reasonable guess for cðrÞ [e.g.,

cðrÞ ¼ �vðrÞ=kBT].

The HNC equation (20a) is an approximation of the

exact relation gðrÞ ¼ exp½�vðrÞ=kBT þ hðrÞ � cðrÞ þ bðrÞ�
obtained by neglecting the so-called bridge function bðrÞ.
Very good analytical expressions for bðrÞ obtained by inter-

polation of exact numerical data can be found in the litera-

ture29 to calculate g(r)’s across coupling regimes. In what

follows, we work with the conventional HNC approximation

(20a).

Comparing Eqs. (20a) and (13), we find that the effec-

tive potential is

/ðrÞ ¼ vðrÞ � kBT hðrÞ � cðrÞ½ �;

¼ vðrÞ � nkBT

ð
dr0cðjr� r0jÞhðr0Þ; (21)

in the HNC approximation. Equation (21) expresses the

effective potential between two particles at a distance r apart

as the sum of the bare interaction v(r) plus a term that

describes the effect of the surrounding medium of the latter.

In the weakly coupled regime, as discussed below, one

recovers the Debye screened potential.

The Debye screened potential is routinely derived in tra-

ditional plasma physics from Poisson’s equation and the

Boltzmann density relation, or from the linear dielectric

response function.30 It can also be obtained from the weakly

coupled limit of the HNC approximation. Equating (13) and

(20a) gives

cðrÞ ¼ exp �/ðrÞ
kBT

� �
� 1þ /ðrÞ

kBT
� vðrÞ

kBT
; (22)

which reduces to cðrÞ ’ �vðrÞ=kBT in the weakly coupled

limit (j/j � kBT). This implies hðrÞ ¼ �/ðrÞ=kBT. The

OZ relation (20b) can then be written /̂ðkÞ ¼ v̂ðkÞ=
ð1þ nv̂ðkÞ=kBTÞ. If the bare interaction is taken to be

Coulombic v̂ðkÞ ¼ 4pq2=k2, this reduces to the screened

Coulomb potential

/ðrÞ=kBT ¼ vscðrÞ ¼ ðq2=rÞexpð�r=kDÞ; (23)

where kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=4pq2n

p
is the Debye length.

Figure 1 shows a comparison between the g(r) obtained

from MD simulations (described below), HNC, screened

Coulomb potential, and cutoff bare Coulomb potentials. The

four descriptions all converge in the weakly coupled limit.

Screened Coulomb remains accurate up until correlation

effects onset at C � 1. Beyond this point, it does not capture

the correct interaction length scale, or the oscillatory behav-

ior characteristic of correlation effects. The HNC approxima-

tion remains sufficiently accurate for our purposes over this

entire range of coupling strength (up to C of 100).

Figure 2 shows a contour plot of g(r) obtained from the

HNC approximation at various coupling strengths. The lines

in this figure show constant g(r) contours starting at 0.1 with

a spacing of 0.1. The red dashed line corresponds to the scal-

ing of the bare Coulomb interaction vðrÞ=kBT ¼ C=ðr=aÞ.
This shows that for weakly coupled plasmas, the interaction

potential is well characterized by a bare Coulomb up until

r ¼ kD, which is shown as a dashed line in the figure. After

this point, g(r) rapidly asymptotes to 1, signifying an effec-

tive truncation of the interaction potential. This sharp transi-

tion provides a visualization of Debye screening. For large

C, the behavior is fundamentally different. Here, the interac-

tion length scale is characterized by the inter-particle spac-

ing, rather than the Debye length. It also shows the onset of
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oscillations associated with nearest neighbor potential wells

at strong coupling.

IV. EVALUATING THE X INTEGRALS

In this section, we calculate the X-integrals based on

each of these models for g(r) in order of increasing complex-

ity. The discussion of the cutoff and screened Coulomb

potentials are written in multicomponent form, but the HNC

discussion concentrates on the OCP.

A. Cutoff Coulomb potential

In this section, a cutoff Coulomb potential is considered

in an effort to make an explicit connection between the

effective potential theory and Landau’s seminal approach,

which imposed screening by limiting the impact parameter

to be within a Debye length. The formulation in Sec. II is

based on an effective potential that is a function of the dis-

tance between colliding particles, with no reference to

impact parameter. Here, we show that an equivalent formula-

tion can be made in the weakly coupled limit by truncating

the interaction distance at the Debye length

/ss0 ðrÞ ¼
qsqs0=r; if r < kD

0; if r > kD

:

(
(24)

Applying Eq. (24) to calculate the scattering angle in

Eq. (5) gives

H ¼ arccos
b=kD þ j=bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j2=b2
p

 !
þ arcsin

b

kD

� �
; ro < kD

p=2; ro > kD

;

8><
>:

(25)

where

ro ¼
b

�j=bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2=b2 þ 1

p (26)

is the distance of closest approach and j ¼ qsqs0=ðmss0u
2Þ. In

the limit b=kD � j=b and j=kD � 1, this reduces to the

Rutherford scattering angle with Landau’s impact parameter

cutoff

H ¼ arccos
j=bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j2=b2
p

 !
; b < kD

p=2; b > kD

:

8><
>: (27)

Applying Eq. (27) to the momentum-transfer cross sec-

tion from Eq. (10) gives

�rðlÞss0

k2
D

¼ 2p
ð1

0

d �b �b 1�
� �b

2 � 1=ðKn2Þ2

�b
2 þ 1=ðKn2Þ2

�l
( )

; (28)

where �b ¼ b=kD and K ¼ mss0�v2
ss0kD=jqsqs0 j is the plasma pa-

rameter. After writing the term in braces using a common de-

nominator and expanding the numerator for �b
2 � 1=ðKn2Þ2

the momentum-transfer cross section reduces to

�rðlÞss0

k2
D

’ 4pl
lnðKn2Þ
ðKn2Þ2

; (29)

in the weakly coupled limit. Applying this to Eq. (8) gives

the following closed form expression for the generalized

Coulomb logarithms

Nðl;kÞss0 ¼ lCðkÞln K; (30)

in the weakly coupled limit. Here, CðkÞ is the Gamma

function.

Convergent forms of these expressions can be obtained

by integrating Eq. (28) directly. For example, the first

momentum-transfer cross section is

�rð1Þss0

k2
D

¼ 2p

ðKn2Þ2
lnð1þ K2n4Þ: (31)

Applying the approximation14 lnð1þK2n4Þ’2lnð1þKn2Þ,
a simple convergent expression for the lowest order

Coulomb logarithm can be obtained15

Nð1;1Þss0 ’ expðK�1ÞE1ðK�1Þ; (32)

where E1 is the exponential integral. Although this expres-

sion is convergent, the weakly coupled expansion has been

applied throughout this section, which restricts its applicabil-

ity. However, the expansion procedure can be used to cap-

ture order unity corrections to the Coulomb logarithms.

Expanding the analytic solutions of Eq. (28) for Kn2 � 1,

the momentum-transfer cross sections reduce to

�rð1Þss0

k2
D

’ 4p

ðKn2Þ2
lnðKn2Þ; (33a)

�rð2Þss0

k2
D

’ 8p

ðKn2Þ2
�

lnðKn2Þ � 1

2

�
; (33b)

FIG. 2. Lines of constant g(r) obtained from the HNC approximation for a

OCP. Lines start at 0.1 and have a linear spacing in increments of 0.1. This

shows the screened Coulomb behavior at weak coupling and correlation

effects at strong coupling. The C / r=a curve represents scaling of the bare

Coulomb potential vðrÞ=kBT ¼ C=ðr=aÞ.
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�rð3Þss0

k2
D

’ 12p

ðKn2Þ2
�

lnðKn2Þ � 2

3

�
; (33c)

where the next correction to the order unity terms in square

brackets are OðK�2n�4Þ. Retaining these order unity correc-

tions, the generalized Coulomb logarithms can be written as

Nð1;kÞss0 ¼ CðkÞ½ln KþWðkÞ�; (34a)

Nð2;kÞss0 ¼ 2CðkÞ½ln KþWðkÞ � 1=2�; (34b)

Nð3;kÞss0 ¼ 3CðkÞ½ln KþWðkÞ � 2=3�; (34c)

in which WðkÞ is the Digamma function

[WðxÞ ¼ C0ðxÞ=CðxÞ].
This expansion is useful for retaining an order unity cor-

rection to ln K. Plasma transport theory is often limited to

	10% accuracy because ln K 	 10 and order unity correc-

tions are usually omitted. Retaining these leads to a more

accurate theory, and allows access to regimes with ln K�10.

These order unity corrections have been obtained by others

using a variety of techniques that typically rely on renormali-

zation of the collision operator in order to avoid the tradi-

tional logarithmically divergent impact parameter

integral.31–33 The calculation of this section provides a

physically intuitive, and mathematically simple, way to

access this physics. It can be further extended by applying

the screened Coulomb potential directly.

B. Screened Coulomb potential

Rather than imposing screening in an ad-hoc manner by

truncating the interaction range at the Debye length, the

screened Coulomb potential can be applied directly.11–15

Although this effective potential is also valid only for weak

coupling, it provides a formulation that is self-consistently

convergent. It is also instructive to consider because it illus-

trates the importance of large angle collisions and that cross

sections are not the same for collisions between like-charges

(qsqs0 > 0) and unlike-charges (qsqs0 < 0) as the coupling

strength increases. In contrast, the Rutherford scattering

cross section (valid at asymptotically weak coupling) does

not distinguish attractive or repulsive collisions.

Furthermore, it provides a simple example to illustrate useful

techniques for numerical evaluation of the theory.

Computing X numerically requires evaluation of three

imbedded integrals: the scattering angle (Eq. (5)), the

momentum-transfer cross section (Eq. (10)), and the general-

ized Coulomb logarithm (Eq. (8)). The first step in evaluat-

ing the scatting angle is to determine the distance of closest

approach (ro) from a root of 1� Veff ¼ 0, where

Veff ¼
b2

r2
þ 2/ss0 ðrÞ

mss0u2
: (35)

For the screened Coulomb potential Veff ¼ �b
2
=�r2 6 2 exp

ð��rÞ=ð�rKn2Þ, where �r ¼ r=kD and þ refers to repulsive col-

lisions (like-charges), while � refers to attractive collisions

(unlike charges). Figure 3 shows that Eq. (35) can have

multiple roots for attractive collisions. The binary collision

picture assumes that scattering particles start asymptotically

far apart, so it is important that the numerical routine associ-

ates ro with the largest of these roots. Figure 4 shows a range

of impact parameters over which multiple roots are found.

This property of having multiple roots arises when Kn2 � 1,

which corresponds with the onset of strong coupling.

Although Sec. IV C will show that correlations must also be

accounted for in this regime, the properties that attractive

and repulsive collisions can be distinguished and that there

are multiple roots of Eq. (35) persist. In fact, the oscillations

found in the effective potential at strong coupling will result

in multiple roots for repulsive collisions as well.

The scattering angle integral formally covers an infinite

range in the distance r. Although convergence is achieved by

covering a range determined by the interaction length scale,

this length varies broadly as the other integration variables

change (b and n). For this reason, we have found it conven-

ient to use the substitution w ¼ b=r and write Eq. (5) as

H ¼
ðwmax

0

dw½1� w2 � 2j/ss0=ðqsqs0 Þ��1=2; (36)

and wmax ¼ b=ro. For screened Coulomb j/ss0=qsqs0

¼ 6w expð��b=wÞ=ðK�bÞ. In this case, the only independent

FIG. 3. The parameter Veff calculated from the screened Coulomb effective

potential for attractive and repulsive collisions. For attractive collisions,

three roots (of Veff ¼ 1Þ are found over a certain range of impact parameters.

The distance of closest approach is the largest root.

FIG. 4. Calculation of the roots of Veff from the screened Coulomb potential.

Multiple roots can be present for attractive collisions when Kn2 � 1.
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variable in the momentum-transfer cross section is Kn2.

Once wmax is determined for a given b and n, H is deter-

mined from Eq. (36). The result is used in Eqs. (8) and (10)

to iteratively solve for the momentum-transfer cross section

and generalized Coulomb logarithm.

To better visualize the fact that “typical” scattering

angles increase with coupling strength, we consider evaluat-

ing Eq. (36) for typical parameters b and n. At any coupling

strength, the most probable speed is approximately unity

(n ’ 1), as the n5expð�n2Þ factor in Eq. (8) demonstrates.

On the other hand, the typical impact parameter depends

strongly on the coupling strength. To quantify an average

impact parameter, we chose the inter-particle spacing b¼ a.

Figure 5 shows numerical solutions of the scattering angle

h ¼ p� 2H from the different effective potential models

choosing b¼ a and n ¼ 1 [hhi � hðb ¼ a; n ¼ 1Þ]. This fig-

ure demonstrates the validity of the small scattering angle

expansions at weak coupling, but that the approximation

breaks down as the coupling strength approaches 1.

Figure 6 shows the first momentum-transfer cross sec-

tion as a function of coupling strength for the attractive and

repulsive screened Coulomb potentials. For this plot, n ¼ 1

has been chosen, and the normalization (k) is an arbitrary

length scale. This figure shows that both solutions converge

to the bare Coulomb result of Eq. (33a) in the weakly

coupled limit. The attractive and repulsive solutions are dis-

tinct for C�1, but this is also the region where correlation

effects onset. Figure 7 shows the resultant generalized

Coulomb logarithms for the repulsive potential. One note-

worthy point here is that the ratios Nðl;kÞ=Nð1;1Þ asymptote to

constants in the weakly coupled limit, whereas they have a

functional dependence on C at moderate and strong coupling.

For instance, these provide the input for the famous Spitzer

conductivity problem,34 where these numbers provide the

higher-order corrections to the near-equilibrium expansion.

This shows that even for moderate correlation these numbers

instead must be functions of the coupling parameter. In Sec.

IV C, we include correlations in these calculations using

HNC.

C. HNC potential

The basics of the numerical integration of Eqs. (5), (10),

and (8) are the same for the HNC potential as was discussed

in Sec. IV B, only the input file changes. However, it can be

significantly more computationally expensive at strong cou-

pling due to the oscillations that arise in the effective poten-

tial. This is because one must be sure to choose the largest of

the possibly several roots of the denominator in Eq. (5) in

order to determine the distance of closest approach. For the

screened Coulomb case, at most three roots arise and they

are broadly spaced so it is easy to bracket a single root.

However, at strong coupling, the oscillating potential can

lead to several closely spaced roots. We have solved for ro

using a bracketed root find, but have found that one must be

careful to make the bracket search window small enough to

only enclose one root. Since this is the first step in each itera-

tion, it can dominate the computation time when the oscilla-

tions are closely spaced. Furthermore, we consider only

repulsive collisions in these HNC computations. Calculating

attractive effective potentials from the HNC equations is

computationally more challenging because g(r) diverges at

the origin. Obstacles associated with this can be overcome,

and the effective potential theory can be applied equally well

to these potentials, but we save this topic for a more detailed

discussion in a future publication.

Figures 5–7 show that correlations have a significant

effect on the scattering angle, momentum-transfer cross sec-

tion and generalized Coulomb logarithms in the strongly

coupled regime. The typical scattering angle approaches 90


at strong coupling, demonstrating the importance of account-

ing for large-angle collisions in this regime. These lead to a

much larger momentum-transfer cross section at strong cou-

pling. Since the array of Nðl;kÞ determine the Xðl;kÞss0 -integrals

through Eq. (7), these provide the only input required to

evaluate the transport coefficients in the Chapman-Enskog or

Grad fluid equations for the OCP. In addition, the general-

ized Coulomb logarithms would be expected to remain

unchanged from the OCP results for certain classes of multi-

component systems. For instance, the HNC equations, and

FIG. 5. The dependence of a “typical” scattering angle on coupling strength

computed from the screened Coulomb and HNC effective potentials for a OCP.

The Rutherford scattering angle is also shown. Here, hhi ¼ hðb ¼ a; n ¼ 1Þ
and h ¼ p� 2H.

FIG. 6. First momentum-transfer cross section calculated using screened

Coulomb and HNC effective potentials. Also shown is the analytic result

obtained for a bare Coulomb potential in the weakly coupled limit [from

Eq. (33a)].

055707-8 S. D. Baalrud and J. Daligault Phys. Plasmas 21, 055707 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

192.12.184.6 On: Wed, 12 Nov 2014 17:26:28



hence the resultant Nðl;kÞ, remain unchanged as long as the

charge of each ion species in the plasma is the same. Only a

rescaling of the coupling strength (C) would be required. In

these cases, the multicomponent effects are all described by

the terms multiplying Nðl;kÞ in Eq. (7). In Sec. V, we compare

the predictions using the data in Fig. 7 to compute transport

coefficients with molecular dynamics simulations for self

diffusion and temperature relaxation rates.

V. COMPARISON WITH MD SIMULATIONS

A. MD approach

MD is a first-principles particle simulation technique

that solves Newton’s force equation for each particle in the

plasma.35 In our MD simulations, the particle trajectories are

determined by accurately solving Newton’s equations of

motion with the velocity Verlet integrator in periodic bound-

ary conditions. The latter requires an evaluation of Ewald

summations over all periodic cells. To this end, we use the

particle-particle-particle-mesh (P3M) method,35,36 which

combines high-resolution of close encounters (which are

dealt with using nearest neighbor techniques) and rapid,

long-range force calculations (which are computed on a

mesh with three-dimensional fast Fourier transforms).

We compute the self-diffusion coefficient D from the

Green-Kubo relation

D ¼ 1

3N

XN

i¼1

ð1
0

dthviðtÞ � við0Þieq; (37)

in terms of an average over the number N of particles of the

time integral of the equilibrium velocity autocorrelation

function for each particle velocity viðtÞ. In Eq. (37), the

brackets h…ieq denote an equilibrium (thermal) average at

temperature T. In practice, the velocity autocorrelation func-

tion is calculated from the time-discretized expression

hviðndtÞ � við0Þi ¼
1

Nsimþ 1� n

XNsim�n

m¼0

viððmþ nÞdtÞ � viðmdtÞ;

where n � Nsim, dt is the time step, and Nsim is the number of

time steps. The pair distribution functions shown in Fig. 1

were computed in a similar manner from the definition in

Eqs. (11) and (12). Additional details on our MD simulations

can be found in Ref. 37.

B. Self diffusion of the OCP

First, we consider self diffusion in a OCP. The lowest-

order mutual diffusion coefficient of the Chapman-Enskog

fluid description is8

½Dss0 �1 ¼
3

16

kBT

nmss0X
ð1;1Þ
ss0

: (38)

For the OCP (s ¼ s0), this can be written as

½D��1 ¼
ffiffiffiffiffiffiffiffi
p=3

p
C5=2

1

Nð1;1Þ
; (39)

in which D� � D=ða2xpÞ and xp is the plasma frequency.

Accounting for a second order correction resulting from

deviation from the Maxwellian distribution provides8

½Dss0 �2 ¼ ½Dss0 �1=ð1� DÞ; (40)

where

D ¼ ð2Nð1;2Þ � 5Nð1;1ÞÞ2=Nð1;1Þ

55Nð1;1Þ � 20Nð1;2Þ þ 4Nð1;3Þ þ 8Nð2;2Þ
: (41)

Figure 8 shows a comparison of the calculated self diffu-

sion coefficient obtained by applying the generalized

FIG. 7. Generalized Coulomb loga-

rithms for a OCP calculated using the

screened Coulomb (dashed lines) and

HNC (diamonds) effective potentials.

Also shown are the analytic results

from Eqs. (34a)–(34c) using the cutoff

Coulomb potential in the weakly

coupled limit (solid lines). Data for

ðl; kÞ 6¼ ð1; 1Þ are normalized by

N ¼ Nð1;1Þ.
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Coulomb logarithms from Fig. 7 based on the various effec-

tive potential models. The figure shows that the effective

potential theory indeed provides an extension of the binary

collision approximation into the strongly coupled regime. As

expected, correlation effects are significant at strong cou-

pling. Thus, the screened Coulomb potential is inadequate in

this regime, even though it is convergent. The result com-

puted from the HNC effective potential is approximately

30% larger than the MD result in the range 1 � C � 30. The

comparison between using the HNC calculated g(r) versus

the MD calculated g(r) in the theory shows that the slight

inadequacies of HNC translates to a negligible difference in

the diffusion coefficient. Thus, the disagreement between the

model predictions and the MD calculation based on Green-

Kubo formula must arise from a break-down of the binary

collision picture at sufficiently strong coupling. This regime

of coupling strength is known to be a crossover point to liq-

uid behavior in the OCP.38 This is discussed further in Sec.

VI. Figure 9 shows that the second order correction to the

self diffusion coefficient provided by Eq. (40) ranges from

about 20% in the weakly coupled limit to a negligible level

at strong coupling.

C. Electron-ion temperature relaxation

Figure 10 shows a comparison between the effective

potential theory calculations and MD simulation of tempera-

ture relaxation in a like-charged electron-ion plasma. Here,

like-charge electrons and ions have been used in order to

enable an ab initio MD simulation. Because classical unlike

point charges can come arbitrarily close to one another, these

interactions are not able to be self-consistently simulated

with MD. Such calculations would require pseudopotentials

to resolve these unphysically close interactions for unlike

charges, but this is avoided entirely by using like charges.

Either case provides a similarly stringent test of the theory.

The simulations were performed by analyzing the relaxation

of two Maxwellian distributions initiated with different tem-

peratures. The details of these simulations and the analysis

technique are provided in Ref. 39. The figure shows the gen-

eralized Coulomb logarithm, which for the simulation data

was inferred from the temperature relaxation rate from

dTe=dt ¼ 2Qe�i=2ne, where Qe�i ¼ �3meine�eiðTe � TiÞ=mi

is the energy exchange density from Eq. (4). The figure

shows a similar range of validity of the effective potential

theory as was found for self diffusion of the OCP. In addition

to these comparisons with MD, the theory was also shown in

Ref. 2 to agree with the most recent experimental data for

the velocity relaxation rate of Srþ ions in an ultracold neutral

plasma.40

VI. LIMITATIONS AND POSSIBLE EXTENSIONS

A fundamental assumption when applying the binary

collision approach is that particles start the collision process

asymptotically far apart. However, the reality is that poten-

tial wells surround particles at strong coupling. These

FIG. 8. Self diffusion coefficient D� ¼ D=a2xp of the OCP calculated using

classical MD with Green-Kubo relations (blue circles) and using various

effective potentials in the Chapman-Enskog collision integrals applied to

Eq. (40): from MD derived g(r) (black squares), HNC (red diamonds), and

screened Coulomb (dashed line). Reprinted with permission from S. D.

Baalrud and J. Daligault, Phys. Rev. Lett. 110, 235001 (2013). Copyright

2013 American Physical Society.

FIG. 9. Second-order correction to the Chapman-Enskog self-diffusion coef-

ficient of a OCP. The weakly coupled limit asymptotes to 1.2 as C! 0.

FIG. 10. The generalized Coulomb logarithm inferred from MD simulations

of like-charge electron-ion temperature relaxation compared with predic-

tions of the effective potential theory. Reprinted with permission from S. D.

Baalrud and J. Daligault, Phys. Rev. Lett. 110, 235001 (2013). Copyright

2013 American Physical Society.
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potential wells can trap particles, which creates a correlation

in the initial condition between the two scattering particles

that is neglected in the basic binary collision picture. As the

coupling strength increases, a larger fraction of particles

spend most of the time trapped in such wells. Thus, the basic

picture of binary collisions breaks down at sufficiently strong

coupling. In this regime, the characteristic particle trajecto-

ries are better described as jumps from well to well.

Transport in this regime is sometimes called caging38,41,42

and its dominance likely provides the limitation of the binary

collision approach at sufficiently strong coupling.

Another assumption of this theory is that the particles

interact though a central and conservative force, implying

that that force depends on only the distance between the par-

ticles. In reality, particles moving faster than the thermal

speed will have a distorted dielectric cloud arising from the

wake effect of the particle streaming through a medium.

This effect can be significant for the stopping power of fast

particles.16 For the near equilibrium properties discussed in

this work, this is expected to be a minor modification

because transport is dominated by the vast majority of par-

ticles which have speeds slower than the thermal speed (and

thus negligible wake effects). However, one could envision

extending this approach either by considering dynamic pair

distribution functions, gðr;xÞ, or modifying the effective

screening length along the lines of the approach taken in

Ref. 16.

Finally, the transport properties described by the

Chapman-Enskog or Grad type theories are based on the

kinetics of the particle trajectories. At strong coupling, con-

tributions to the transport coefficients arise solely from the

potential energy of the particles. For instance, the Green-

Kubo relations for viscosity and thermal conductivity have

kinetic-kinetic and potential-potential terms (as well as

mixed terms). We have found that the effective potential

approach fits very well the kinetic-kinetic contributions only.

For viscosity this leads to only a slightly narrowed range of

validity of the overall theory, but the main distinction is that

the theory breaks down in a more dramatic fashion outside

of this range. This topic will be discussed in detail in a later

publication.

VII. SUMMARY

We have found that traditional transport theories based

on a binary collision approximation can be extended into the

strong coupling regime by applying an interaction potential

that accounts for many-body correlation effects. By associat-

ing this potential with the potential of mean force, a simple

connection can be made to the pair distribution function g(r).

This opens the door for a host of approximations for g(r) to

provide the input for the transport theory. We concentrated

on the HNC approximation, which is a standard approximate

method for simple systems. The results showed extension of

common transport coefficients, in particular, self diffusion

and electron-ion temperature relaxation, by a couple of

orders of magnitude in coupling strength. This provides a

physically intuitive approach that has several practical bene-

fits. These include the computational simplicity and

efficiency of the formulation, as well as its versatility in that

it fits naturally within the most common approaches to fluid

transport modeling, namely, the Chapman-Enskog or Grad

methods. This theory may provide a computationally effi-

cient means of modeling transport properties in several

applications where plasmas cross coupling boundaries with-

out reaching the very strong coupling regimes where the ba-

sic assumptions underlying the binary collision approach

break down.
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