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The update of the correction term is 
performed using a Monte Carlo transport 
calculation [3].

We have applied the IRMC method to the  
3-D, 1T, nonlinear radiation diffusion 
equation. A multimaterial duct problem is 
shown in Fig. 1. This problem features a 
0.5 keV blackbody flux on the low-x side. 
Radiation is propagated through a dog-
legged duct bounded by an opaque wall. 
An optically thick foil is placed on the 
high-y side of the outlet. A contour plot of 
the solution is shown in Fig. 2, and the time-
evolution of the temperature at four edit 
points is shown in Fig. 3. The Monte Carlo 
solution can be run to arbitrary precision 
because the convergence of the IRMC 
method is not bound by the Central Limit 
Theorem.  

We have compared the IRMC method on 
this problem with standard solution 
techniques. The IRMC method compared 
with preconditioned Conjugate Gradient 
(CG) and Richardson iteration are shown in 
Table 1. The IRMC method compares very 
favorably to preconditioned Richardson 
iteration and is marginally faster than 
preconditioned CG.

Residual Monte Carlo Methods
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In Ref. [1], we developed a residual 
Monte Carlo method that was an 
application of Halton’s Sequential 
Monte Carlo method [2] to the (1-D) 

equilibrium (1T) thermal radiation diffusion 
equation. At that time, Halton’s method was 
not widely known among numerical 
practitioners. While extending our method 
to 3-D, we have discovered that the 
Sequential Monte Carlo method is actually a 
variant of iterative refinement cast as a 
residual method. Based more rigorously on 
iterative refinement, our new Monte Carlo 
method surpasses our previous 1-D method 
and allows for extension to more general 
solution techniques.

The goal of recent work is to develop 
efficient Monte Carlo solvers for discrete 
systems. We have developed fast linear 
solvers using Monte Carlo techniques with 
two parallel approaches in this effort: one 
approach for general linear systems and the 
other for nonsymmetric, multidimension, 
banded systems that result from discretized 
partial differential equations.

The focus of the second approach is to solve 
3-D diffusion equations for nonlinear 
thermal radiative transfer. Along these lines, 
we have extended our previous work by 
developing an Iterative-Refinement Monte 
Carlo (IRMC) method for solving sparse 
matrix systems. We applied this solver to 
the 1T thermal radiation diffusion equation 
in 3-D Cartesian geometry.

Consider the following preconditioned, 
discrete linear system,

	  M-1Dφ  = M-1q.	 (1)

The only requirement on the preconditioned 
system is that the spectral radius of M-1D 
must be less than 1. The IRMC method that 
solves (1) is defined
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Table 1: Comparison of solution methods for the 
multimaterial problem. The problem was run to 
an elapsed time of 10 sh requiring 10157 cycles.

Method Max
Iterations

CPU  
Time (s)

Preconditioned 
CG 18 12794.3

Preconditioned 
Richardson 38 17677.6 

IRMC 20 12367.4

We have presented a new Monte Carlo 
solution method for solving the discrete, 
time-dependent diffusion equation in 3-D. 
The IRMC method has been shown to match 
results using standard solution techniques 
to arbitrary precision. Also, the new method 
is faster than preconditioned CG and 
Richardson iteration.

While we have demonstrated marginal 
improvements over standard solution 
schemes in this study, significant 
improvements could be realized in fully 
nonlinear-consistent solutions. In these 
cases, the IRMC method competes with 
GMRES, which is more costly in memory 
and time than CG. Another area where the 
IRMC scheme may have advantages over 
traditional solution methods is on dentritic, 
or adaptive, meshes. These meshes yield 
matrices with poor condition numbers 
because of the changing cell volumes at 
different refinement levels. A smart 
transport algorithm could be developed that 
more efficiently solves the residual on these 
types of meshes. These topics 
will be the focus of future 
study.

For more information contact Thomas M. 
Evans at tme@lanl.gov.

[1] T. Evans, et al., J. Comp. Phys. 189, pp. 539–
556, 2003.
[2] J. Halton, J. Sci. Computing 9(2), pp. 213–257, 
1994.
[3] J. Hammersly and D. Handscomb, Monte Carlo 
Methods (Spottiswoode, Ballantyne, and Co., 
London, 1964).

Funding Acknowledgements
NNSA’s Advanced Simulation and 
Computing (ASC) Computational Physics 
and Methods Strategic Capability program, 
Advanced Discrete Monte Carlo Project.
	 	

Fig. 1.
Multimaterial problem 
mesh (60x60x60): blue 
shows the duct region, 
red shows the wall, 
and green shows the 
foil.

Fig. 2.
Contour plot of the 
temperature at 100 sh 
on a cut-plane posi-
tioned at the midpoint 
of the z-axis.

Fig. 3.
Time evolution of the 
temperature at the edit 
points shown in Fig. 2.




