Los Alamos National Laboratory

Los Alamos National Laboratory

Delivering science and technology to protect our nation and promote world stability

Methods and Algorithms

Providing comprehensive, cross-linked expertise for the development of scientific computing from conception through implementation and application
  • Numerical methods

    Novel numerical methods for multimaterial diffusion

  • Compressible turbulent mixing

    3D simulations of shock-driven compressible turbulent mixing using the xRAGE code

  • Detonation wave simulation

    Detonation wave propagation in a slab of high explosive

  • Solid mechanics

    Godunov-like Lagrangian methods are used to solve the Verney metal shell and Sedov blast wave test problems

Contact Us  

  • Group Leader
  • Marianne Francois
  • Email
  • Group Administrator
  • Astrid Howland
  • Email

Developing advanced concepts for scientific computing

The Methods and Algorithms (XCP-4) group focuses on developing advanced numerical methods for high-speed multimaterial flows and methods for turbulence and multicomponent reactive flows for national security applications.

Our research interests are diverse, and include:

  • High-order numerical methods for compressible flow
  • Scale bridging algorithms and adaptive refinement techniques
  • Numerical methods for fluid-structure interaction problems and interfacial flows
  • Physics models for multifluid/multiphase reactive flow
  • Turbulence models (RANS, LES, hybrid RANS-LES)
  • Models for detonation-to-deflagration transition and for detonation wave propagation in solid elasto-plastic porous medium
  • Development, implementation, and validation of solid mechanics models
Numerical Methods for Computational Hydrodynamics

We develop numerical methods to simulate complex multi-material flows, with applications ranging from inertial confinement fusion, to designing compressible flow experiments and modeling atmospheric flows. Some active research topics include:

Lagrangian hydrodynamics methods
Both cell-centered hydrodynamic (CCH) and staggered-grid hydrodynamic (SGH) methods are actively studied.

Arbitrary Lagrangian Eulerian (ALE) hydrodynamics methods
The ALE approach is exceptionally flexible and is quite useful for simulating complex multi-material vortical flows involving gasses, metals, and viscous fluids on fully unstructured polytopal meshes.

High-order hydrodynamics methods
Higher-order methods can achieve higher accuracy than low order methods on a given mesh resolution. Hence they have the potential to save on overall computational cost. Further, they are amenable to exascale computer architecture. Developing high-order methods for multi-material compressible flow requires walking a thin line between numerical stability and improved accuracy.

Conservative remaps
In many applications, it is advantageous, or even essential, to develop a new computational mesh that better captures the details of a flow and then remap (constrained data transfer) the quantities from the old mesh to the new mesh. It is important to develop accurate and conservative methods to remap the quantities between the fully unstructured disparate polytopal meshes. Conservative remaps are required for the novel Reconnection ALE (ReALE) method that seeks to continually adapt a moving mesh to the flow.

Mimetic discretizations
The objective is to develop discrete equations that mimic the key properties of the corresponding analytic hyperbolic and parabolic partial differential equations. Mimetic methods are a revolutionary breakthrough that is yielding significant improvements in numerical accuracy.

Dynamically evolving interfaces
The need to accurately simulate dynamically evolving interfaces (e.g., material interfaces, and phase, detonation, or reaction fronts) is important in many hydrodynamic and fluid dynamic flows.

Temporal discretization methods
Super-time-stepping is a novel temporal discretization method that maintains the simplicity and locality of an explicit method, and overcomes the explicit time-step restriction.

Adaptive mesh refinement
Adaptive mesh refinement technique allows increasing spatial resolution locally in a simulation.

Turbulent Mixing at Extremes

We develop, implement, and evaluate physics based turbulence models for variable-density, multicomponent, reactive flows.  Our models play a critical role in multi-physics CFD codes addressing the programmatic needs of national security, as well as serving the broader scientific community.  We evaluate our models by comparison to data from laboratory experiments conducted both inside and outside of the Laboratory, as well as from relevant high-resolution and direct numerical simulations of computational experiments.

Advanced closure modeling
Turbulence modeling of unresolved processes requires representing small-scale quantities of the flow in terms of the larger scales.  We use statistical mechanics, moment closure, and other mathematical techniques to produce models that are extracted from the physical governing equations.

Mixtures and interfacial flows
Flows with multiple components are important for many applications, particularly for reacting flows, and present unique challenges for turbulence modeling.  This can include sharp interfaces, homogeneous mixtures, and everything in between.

Computational Solid Mechanics

We develop, implement, and validate solid mechanics models relevant to our hydrocode simulations. Our activities focus on:

  • Physics model development and implementation into our hydrocodes.
  • Verification and validation of physics models in our hydrocodes.

We are specifically interested in the following phenomena:

  • Material response to dynamic loading
  • The tie between microstructure and material response
  • Particular materials of interest include:
    • Porous material
    • Reactive materials
    • Additively manufactured materials (particularly metals)
    • Geomaterials
    • Metals, ceramics, polymers
High Explosives (HE) Modeling and Simulation

We develop, implement, verify and validate high explosives (HE) models.  We have been involved in all stages of HE model development from theory through implementation and use in a full multiphysics simulation. Our activities focus on:

HE burn models:  development, implementation and verification
Both programmed-burn and reactive burn models are actively researched.

HE model calibration
The modeling of large, multi-dimensional engineering geometries is a significant multi-scale computational challenge. We develop and use tools for the calibration of model parameters for HE reactive burn and sub-scale models.

Modeling of HE products equations of state
We provide support in the development of a chemical equilibrium code in the modeling of HE products equations of state.

Simulation set-up and applications
In addition to developing and implementing HE models, we also run simulations of interest utilizing our HE models. Our focus is on model validation and the effect of different HE models on simulation results.



D'Elia, M., Ridzal, D., Peterson, K. J., Bochev, P., Shashkov, M. Optimization-based mesh correction with volume and convexity constraints. Journal of Computational Physics 313: 455-477, 2016. DOI: 10.1016/j.jcp.2016.02.050

Diot, S. and François, M. M. An interface reconstruction method based on an analytical formula for 3D arbitrary convex cells. Journal of Computational Physics 305: 63-74, 2016. DOI: 10.1016/j.jcp.2015.10.011

Hoffman, C. M., Canfield, J., Linn, R. R., Mell, W., Sieg, C. H., Pimont, F., Ziegler, J. Evaluating Crown Fire Rate of Spread Predictions from Physics-Based Models. Fire Technology 52(1): 221-237, 2016. DOI: 10.1007/s10694-015-0500-3

Lipnikov, K., Manzini, G., Moulton, J. D., Shashkov, M. The mimetic finite difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient. Journal of Computational Physics 305: 111-126, 2016. DOI: 10.1016/j.jcp.2015.10.031

Tinkham, W. T., Hoffman, C. M., Canfield, J. M., Vakili, E., Reich, R. M. Using the photoload technique with double sampling to improve surface fuel loading estimates. International Journal of Wildland Fire 25(2): 224-228, 2016. DOI: 10.1071/WF15027

Schwarzkopf, J. D., Livescu, D., Baltzer, J. R., Gore, R. A., Ristorcelli, J. R. A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing. Flow, Turbulence and Combustion 96(1): 1-43, 2016. DOI: 10.1007/s10494-015-9643-z


Bo, W. and Shashkov, M. Adaptive reconnection-based arbitrary Lagrangian Eulerian method. Journal of Computational Physics 299: 902-939, 2015. DOI: 10.1016/j.jcp.2015.07.032

Burton, D. E., Morgan, N. R., Carney, T. C., Kenamond, M. A. Reduction of dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradient reconstruction (CGR). Journal of Computational Physics 299: 229-280, 2015. DOI: 10.1016/j.jcp.2015.06.041

Jemison, M., Sussman, M., Shashkov, M. Filament capturing with the Multimaterial Moment-of-Fluid method. Journal of Computational Physics 285: 149-172, 2015. DOI: 10.1016/j.jcp.2015.01.014

Morgan, N. R., Waltz, J. I., Burton, D. E., Charest, M. R., Canfield, T. R., Wohlbier, J. G. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach. Journal of Computational Physics 281: 614-652, 2015. DOI: 10.1016/j.jcp.2014.10.048

Morgan, N. R., Waltz, J. I., Burton, D. E., Charest, M. R., Canfield, T. R., Wohlbier, J. G. A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes. Journal of Computational Physics 290: 239-273, 2015. DOI: 10.1016/j.jcp.2015.02.024

Nelson, N. J. and Grinstein, F. F. Effects of initial condition spectral content on shock-driven turbulent mixing. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 92(1) , 2015. DOI: 10.1103/PhysRevE.92.013014

Ramshaw, J. D. and Chang, C. H. Numerical stability in multifluid gas dynamics with implicit drag forces. Computer Physics Communications 195: 61-67, 2015. DOI: 10.1016/j.cpc.2015.04.019

Runnels, S. R. Capturing plasticity effects in overdriven shocks on the finite scale. Mathematics and Computers in Simulation 111: 63-79, 2015. DOI: 10.1016/j.matcom.2014.12.006

Taitano, W. T., Knoll, D. A., Chacón, L., Reisner, J. M., Prinja, A. K. Moment-based acceleration for neutral gas kinetics with BGK collision operator. Journal of Computational and Theoretical Transport 43(1-7): 83-108, 2015. DOI: 10.1080/00411450.2014.910228


Bakosi, J. and Ristorcelli, J. R. Diffusion processes satisfying a conservation law constraint. International Journal of Stochastic Analysis 2014. DOI: 10.1155/2014/603692

Barlow, A., Hill, R., and Shashkov, M. Constrained optimization framework for interface-aware sub-scale dynamics closure model for multimaterial cells in Lagrangian and arbitrary Lagrangian-Eulerian hydrodynamics. Journal of Computational Physics 276: 92-135, 2014. DOI: 10.1016/j.jcp.2014.07.031

Bazilevs, Y., Long, C. C., Akkerman, I., Benson, D. J., Shashkov, M. J. Isogeometric analysis of Lagrangian hydrodynamics: Axisymmetric formulation in the rz-cylindrical coordinates. Journal of Computational Physics 262: 244-261, 2014. DOI: 10.1016/j.jcp.2014.01.001

Denissen, N. A., Rollin, B., Reisner, J. M., Andrews, M. J. The tilted rocket rig: A rayleigh-taylor test case for RANS models. Journal of Fluids Engineering, Transactions of the ASME 136(9), 2014. DOI: 10.1115/1.4027776

Diot, S., François, M. M., Dendy, E. D. A higher-order unsplit 2D direct Eulerian finite volume method for two-material compressible flows based on the MOOD paradigms. International Journal for Numerical Methods in Fluids 76(12): 1064-1087, 2014. DOI: 10.1016/j.jcp.2014.06.060

Diot, S., François, M. M., Dendy, E. D. An interface reconstruction method based on analytical formulae for 2D planar and axisymmetric arbitrary convex cells. Journal of Computational Physics 275: 53-64, 2014. DOI: 10.1016/j.jcp.2014.06.060

Friess, M. B., Breil, J., Maire, P. H., Shashkov, M. (2014). A multi-material CCALE-MOF approach in cylindrical geometry. Communications in Computational Physics 15(2): 330-364. DOI: 10.4208/cicp.190912.080513a

Haines, B. M., Grinstein, F. F., Fincke, J. R. Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 89(5), 2014. DOI: 10.1103/PhysRevE.89.053302

Joggerst, C. C., Nelson, A., Woodward, P., Lovekin, C., Masser, T., Fryer, C. L., Ramaprabhu, P., Francois, M., Rockefeller, G. Cross-code comparisons of mixing during the implosion of dense cylindrical and spherical shells. Journal of Computational Physics 275: 154-173, 2014. DOI: 10.1016/j.jcp.2014.06.037

Kenamond, M., Bement, M., and Shashkov, M. Compatible, total energy conserving and symmetry preserving arbitrary Lagrangian-Eulerian hydrodynamics in 2D rz - Cylindrical coordinates. Journal of Computational Physics 268: 154-185, 2014. DOI: 10.1016/j.jcp.2014.02.039

Kucharik, M. and Shashkov, M. Conservative multi-material remap for staggered multi-material Arbitrary Lagrangian-Eulerian methods. Journal of Computational Physics 258: 268-304, 2014. DOI: 10.1016/j.jcp.2013.10.050

Lipnikov, K., Manzini, G., Shashkov, M.  Mimetic finite difference method. Journal of Computational Physics 257(PB): 1163-1227, 2014. DOI: 10.1016/j.jcp.2013.07.031

Margolin, L. G. Finite scale theory: The role of the observer in classical fluid flow. Mechanics Research Communications 57: 10-17, 2014. DOI: 10.1016/j.mechrescom.2013.12.004

Margolin, L. G. and Andrews, M.G.  Models for crenulation of a converging shell. Journal of Fluids Engineering, Transactions of the ASME 136(8), 2014. DOI: 10.1115/1.4025868

Maxwell, J. L., Webb, N., Bradshaw, D., Black, M. R., Maskaly, K., Chavez, C. A., Espinoza, M., Vessard, S., Art, B. et al. On “how to start a fire”, or transverse forced-convection, hyperbaric laser chemical vapor deposition of fibers and textiles. Textile Research Journal 84(18): 1976-1986, 2014. DOI: 10.1177/0040517514527373

Morgan, N. R., Lipnikov, K. N., Burton, D. E., Kenamond, M. A. A Lagrangian staggered grid Godunov-like approach for hydrodynamics. Journal of Computational Physics 259: 568-597, 2014. DOI: 10.1016/j.jcp.2013.12.013

Owen, J. M. and Shashkov, M.  Arbitrary Lagrangian Eulerian remap treatments consistent with staggered compatible total energy conserving Lagrangian methods. Journal of Computational Physics 273: 520-547, 2014. DOI: 10.1016/j.jcp.2014.05.023

Zhou, Y., Grinstein, F. F., Wachtor, A. J., Haines, B. M. Estimating the effective Reynolds number in implicit large-eddy simulation. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 89(1), 2014. DOI: 10.1103/PhysRevE.89.013303


Bakosi, J. and Ristorcelli, J. R.  A stochastic diffusion process for Lochner's generalized Dirichlet distribution. Journal of Mathematical Physics 54(10). DOI: 10.1063/1.4822416

Bakosi, J. and Ristorcelli, J.R.  A stochastic diffusion process for the dirichlet distribution. International Journal of Stochastic Analysis 2013. DOI: 10.1155/2013/842981

Bazilevs, Y., Akkerman, I., Benson, D. J., Scovazzi, G., and Shashkov, M. J. Isogeometric analysis of Lagrangian hydrodynamics. Journal of Computational Physics 243: 224-243, 2013. DOI: 10.1016/j.jcp.2013.02.021

Bochev, P., Ridzal, D., Shashkov, M. J. Fast optimization-based conservative remap of scalar fields through aggregate mass transfer. Journal of Computational Physics 246: 37-57, 2013. DOI: 10.1016/j.jcp.2013.03.040

Breil, J., Harribey, T., Maire, P. H., Shashkov, M. J. A multi-material ReALE method with MOF interface reconstruction. Computers and Fluids 83: 115-125, 2013. DOI: 10.1016/j.compfluid.2012.08.015

Burton, D. E., Carney, T. C., Morgan, N. R., Sambasivan, S. K., Shashkov, M. J. A cell-centered Lagrangian Godunov-like method for solid dynamics. Computers and Fluids 83: 33-47, 2013. DOI: 10.1016/j.compfluid.2012.09.008

Denissen, N. A., Rollin, B., Reisner, J. M., Andrews, M. J. Modeling turbulent Rayleigh-Taylor mixing with dynamic interfaces. 43rd Fluid Dynamics Conference. 2013. URL : http://dx.doi.org/10.2514/6.2013-2487

Francois, M. M. and Carlson, N.N. The global embedded interface formulation for interfacial mass transfer within a volume tracking framework. Computers and Fluids 87: 102-114, 2013. DOI: 10.1016/j.compfluid.2013.02.016

Francois, M. M., Shashkov, M. J., Masser, T. O., Dendy, E. D. A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation. Computers and Fluids 83: 126-136, 2013. DOI: 10.1016/j.compfluid.2012.06.011

Grinstein, F. F., Gowardhan, A. A., Ristorcelli, J. R. Implicit large eddy simulation of shock-driven material mixing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371(2013). DOI: 10.1098/rsta.2012.0217

Haines, B. M., Grinstein, F. F., Welser-Sherrill, L., Fincke, J. R. Simulations of material mixing in laser-driven reshock experiments. Physics of Plasmas 20(2) , 2013. DOI: 10.1063/1.4793443

Haines, B. M., Grinstein, F. F., Welser-Sherrill, L., Fincke, J. R., Doss, F. W.  Analysis of the effects of energy deposition on shock-driven turbulent mixing. Physics of Plasmas 20(7) , 2013. DOI: 10.1063/1.4816035

Haines, B. M., Grinstein, F. F., Welser-Sherrill, L., Fincke, J. R., Doss, F. W. Simulation ensemble for a laser-driven shear experiment. Physics of Plasmas 20(9) , 2013. DOI: 10.1063/1.4820768

Harribey, T., Breil, J., Maire, P. H., Shashkov, M. J. A swept-intersection-based remapping method in a ReALE framework. International Journal for Numerical Methods in Fluids 72(6): 697-708, 2013. DOI: 10.1002/fld.3763

Hill, R. N. and Shashkov, M. J.  The Symmetric Moment-of-Fluid interface reconstruction algorithm. Journal of Computational Physics 249: 180-184, 2013. DOI: 10.1016/j.jcp.2013.04.037

Jemison, M., Loch, E., Sussman, M., Shashkov, M. J., Arienti, M., Ohta, M., Wang, Y. A coupled level set-moment of fluid method for incompressible two-phase flows. Journal of Scientific Computing 54(2-3): 454-491,2013. DOI: 10.1007/s10915-012-9614-7

Morgan, N. R., Kenamond, M. A., Burton, D. E., Carney, T. C., Ingraham, D. J.  An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics. Journal of Computational Physics 250: 527-554, 2013. DOI: 10.1016/j.jcp.2013.05.015

Reisner, J., Serencsa, J., Shkoller, S. A space-time smooth artificial viscosity method for nonlinear conservation laws. Journal of Computational Physics 235: 912-933, 2013. DOI: 10.1016/j.jcp.2012.08.027

Ristorcelli, J. R., Gowardhan, A. A., Grinstein, F. F.  Two classes of Richtmyer-Meshkov instabilities: A detailed statistical look. Physics of Fluids 25(4), , 2013. DOI: 10.1063/1.4802039

Rollin, B., Denissen, N. A., Reisner, J. M., Andrews, M. J.  Application of a novel approach for turbulence model initialization: Preliminary results. 43rd Fluid Dynamics Conference 2013. URL: http://dx.doi.org/10.2514/6.2013-2485

Sambasivan, S. K., Shashkov, M. J., Burton, D. E. A cell-centered Lagrangian finite volume approach for computing elasto-plastic response of solids in cylindrical axisymmetric geometries. Journal of Computational Physics 237: 251-288, 2013. DOI: 10.1016/j.compfluid.2012.04.010

Sambasivan, S. K., Shashkov, M. J., Burton, D. E. A finite volume cell-centered Lagrangian hydrodynamics approach for solids in general unstructured grids. International Journal for Numerical Methods in Fluids 72(7): 770-810, 2013. DOI: 10.1002/fld.3770

Sambasivan, S. K., Shashkov, M. J., Burton, D. E. Exploration of new limiter schemes for stress tensors in Lagrangian and ALE hydrocodes. Computers and Fluids 83: 98-114, 2013. DOI: 10.1016/j.compfluid.2012.04.010

Tomkins, C. D., Balakumar, B. J., Orlicz, G., Prestridge, K. P., Ristorcelli, J. R. Evolution of the density self-correlation in developing Richtmyer-Meshkov turbulence. Journal of Fluid Mechanics 735: 288-306, 2013. DOI: 10.1017/jfm.2013.430

Velechovský, J., Kuchařík, M., Liska, R., Shashkov, M.  Symmetry-preserving momentum remap for ALE hydrodynamics. Journal of Physics: Conference Series 454(1), 2013. DOI: 10.1088/1742-6596/454/1/012003

Velechovský, J., Kuchařík, M., Liska, R., Shashkov, M., Váchal, P. Symmetry- and essentially-bound-preserving flux-corrected remapping of momentum in staggered ALE hydrodynamics. Journal of Computational Physics 255: 590-611, 2013. DOI: 10.1016/j.jcp.2013.08.037

Wachtor, A. J., Grinstein, F. F., DeVore, C. R., Ristorcelli, J. R. Implicit large-eddy simulation of isotropic turbulent mixing. 43rd Fluid Dynamics Conference 2013. DOI: 10.2514/6.2013-3184

Wachtor, A. J., Grinstein, F. F., DeVore, C. R., Ristorcelli, J. R., Margolin, L. G. Implicit large-eddy simulation of passive scalar mixing in statistically stationary isotropic turbulence. Physics of Fluids 25(2), 2013. DOI: 10.1063/1.4783924

Welser-Sherrill, L., Fincke, J., Doss, F., Loomis, E., Flippo, K., Offermann, D., Keiter, P., Haines, B., Grinstein, F. Two laser-driven mix experiments to study reshock and shear. High Energy Density Physics 9(3): 496-499, 2013. DOI: 10.1016/j.hedp.2013.04.015

Yanilkin, Y. V., Goncharov, E. A., Kolobyanin, V. Y., Sadchikov, V. V., Kamm, J. R., Shashkov, M. J., Rider, W. J. Multi-material pressure relaxation methods for Lagrangian hydrodynamics. Computers and Fluids 83: 137-143, 2013. DOI: 10.1016/j.compfluid.2012.05.020


Balakumar, B. J., Orlicz, G. C., Ristorcelli, J. R., Balasubramanian, S., Prestridge, K. P., Tomkins, C. D. Turbulent mixing in a Richtmyer-Meshkov fluid layer after reshock: Velocity and density statistics. Journal of Fluid Mechanics 696: 67-93, 2012. DOI: 10.1017/jfm.2012.8

Chang, C. H. and Stagg, A. K. A compatible Lagrangian hydrodynamic scheme for multicomponent flows with mixing. Journal of Computational Physics 231(11): 4279-4294, 2012. DOI: 10.1016/j.jcp.2012.02.005

Godinez, H. C., Reisner, J. M., Fierro, A. O., Guimond, S. R., Kao, J. Determining key model parameters of rapidly intensifying hurricane guillermo (1997) using the ensemble kalman filter. Journal of the Atmospheric Sciences 69(11): 3147-3171, 2012. DOI: 10.1175/JAS-D-12-022.1

Grinstein, F. F., Gowardhan, A. A., Ristorcelli, J. R., Wachtor, A. J. On coarse-grained simulations of turbulent material mixing. Physica Scripta 86(5) , 2012. DOI: 10.1088/0031-8949/86/05/058203

Grinstein, F. F., Haine, B. M., Schwarzkopf, J. D.  RANS initialization and validation in shock-driven turbulent mixing. 42nd AIAA Fluid Dynamics Conference and Exhibit 2012.  URL: http://arc.aiaa.org/doi/pdf/10.2514/6.2012-3284

Guimond, S. R. and Reisner, J.M. A latent heat retrieval and its effects on the intensity and structure change of hurricane guillermo (1997). Part ii: Numerical simulations. Journal of the Atmospheric Sciences 69(11): 3128-3146, 2012. DOI: 10.1175/JAS-D-11-0201.1

Kucharik, M. and Shashkov, M.  One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods. Journal of Computational Physics 231(7): 2851-2864, 2012. DOI: 10.1016/j.jcp.2011.12.033

Linn, R. R., Canfield, J. M., Cunningham, P., et al. Using periodic line fires to gain a new perspective on multi-dimensional aspects of forward fire spread. Agricultural and Forest Meteorology 157: 60-76, 2012. DOI: 10.1016/j.agrformet.2012.01.014

Margolin, L. G.  A strain space framework for numerical hyperplasticity. Mathematics and Computers in Simulation. 2012. DOI: 10.1016/j.matcom.2012.06.016

Margolin, L. G. and Vaughan, D.E. Traveling wave solutions for finite scale equations. Mechanics Research Communications 45: 64-69, 2012. DOI: 10.1016/j.mechrescom.2012.07.003

Rollin, B., Denissen, N. A., Reisner, J. M., Andrews, M. J. Simulations of the tilted rig experiment using the XRAGE and FLAG hydrocodes. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) 2012. DOI: 10.1115/IMECE2012-93094


Bakosi, J. and Ristorcelli, J.R. Extending the langevin model to variable-density pressure-gradient-driven turbulence. Journal of Turbulence 12: 1-33, 2011. DOI: 10.1080/14685248.2011.554419

Berndt, M., Breil, J., Galera, S., Kucharik, M., Maire, P. H., Shashkov, M. Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods. Journal of Computational Physics 230(17): 6664-6687, 2011. DOI: 10.1016/j.jcp.2011.05.003

Bochev, P., Ridzal, D., Scovazzi, G., Shashkov, M.  Formulation, analysis and numerical study of an optimization-based conservative interpolation (remap) of scalar fields for arbitrary Lagrangian-Eulerian methods. Journal of Computational Physics 230(13): 5199-5225, 2011. DOI: 10.1016/j.jcp.2011.03.017

Fierro, A. O. and Reisner, J. M. High-resolution simulation of the electrification and lightning of Hurricane Rita during the period of rapid intensification. Journal of the Atmospheric Sciences 68(3): 477-494, 2011. DOI: 10.1175/2010JAS3659.1

Fierro, A. O., Shao, X. M., Hamlin, T., Reisner, J. M., Harlin, J.  Evolution of eyewall convective events as indicated by intracloud and cloud-to-ground lightning activity during the rapid intensification of Hurricanes Rita and Katrina. Monthly Weather Review 139(5): 1492-1504, 2011. DOI: 10.1175/2010MWR3532.1

Gowardhan, A. A., Balasubramanian, S., Grinstein, F. F., Prestridge, K. P., Ristorcelli, J. R. Analysis of computational and laboratory shocked gas-curtain experiments. 6th AIAA Theoretical Fluid Mechanics Conference, 2011. URL: http://arc.aiaa.org/doi/pdf/10.2514/6.2011-3040

Gowardhan, A. A., Grinstein, F. F., Ristorcelli, J. R.  Planar Richtmyer-Meshkov instabilities and transition. Journal of Physics: Conference Series 318(SECTION 3), 2011. DOI: 10.1088/1742-6596/318/3/032009

Gowardhan, A. A., Ristorcelli, J. R., Grinstein, F. F. The bipolar behavior of the Richtmyer-Meshkov instability. Physics of Fluids 23(7), 2011. DOI: 10.1063/1.3610959

Kamm, J. R., Shashkov, M. J., Fung, J., Harrison, A. K., Canfield, T. R.  A comparative study of various pressure relaxation closure models for one-dimensional two-material Lagrangian hydrodynamics. International Journal for Numerical Methods in Fluids 65(11-12): 1311-1324, 2011. DOI: 10.1002/fld.2354

Kucharik, M., Breil, J., Galera, S., Maire, P. H., Berndt, M., Shashkov, M.  Hybrid remap for multi-material ALE. Computers and Fluids 46(1): 293-297, 2011. DOI: 10.1016/j.compfluid.2010.08.004

Liska, R., Shashkov, M., Váchal, P., Wendroff, B. Synchronized flux corrected remapping for ALE methods. Computers and Fluids 46(1): 312-31, 2011. DOI: 10.1016/j.compfluid.2010.11.013

Loubère, R., Maire, P. H., Shashkov, M.  ReALE: A Reconnection Arbitrary-Lagrangian-Eulerian method in cylindrical geometry. Computers and Fluids 46(1): 59-69, 2011. DOI: 10.1016/j.compfluid.2010.08.024


Technical Staff

  • Randy Bos
  • Don Burton
  • Jesse Canfield
  • Ted Carney
  • Chong Chang
  • Carlos Chiquete
  • Marianne Francois
  • Fernando Grinstein
  • Daniel Israel
  • Carl Johnson
  • Karlene Maskaly
  • Chad Meyer
  • Nathaniel Morgan
  • James Quirk
  • Jonathan Regele
  • Jon Reisner
  • Ray Ristorcelli
  • Scott Runnels
  • Juan Saenz
  • Mikhail Shashkov


  • Evan Lieberman
  • Xiaodong Liu
  • Matthew Price (Joint appointment with M-9)


  • Adam Coleman
  • Bryan Kaiser
  • Anna Short

Visit Blogger Join Us on Facebook Follow Us on Twitter See our Flickr Photos Watch Our YouTube Videos Find Us on LinkedIn Find Us on iTunesFind Us on GooglePlayFind Us on Instagram