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Over the past several years a number of papers have been written describing modern 
techniques for numerically computing the dominant eigenvalue of the neutron transport 
criticality problem. These methods fall into two distinct categories. The first category of 
methods rewrite the multi-group k-eigenvalue problem as a nonlinear system of equations 
and solve the resulting system using either a Jacobian-Free Newton–Krylov (JFNK) method 
or Nonlinear Krylov Acceleration (NKA), a variant of Anderson Acceleration. These methods 
are generally successful in significantly reducing the number of transport sweeps required 
to compute the dominant eigenvalue. The second category of methods utilize Moment-
Based Acceleration (or High-Order/Low-Order (HOLO) Acceleration). These methods solve 
a sequence of modified diffusion eigenvalue problems whose solutions converge to the 
solution of the original transport eigenvalue problem. This second class of methods is, 
in our experience, always superior to the first, as most of the computational work is 
eliminated by the acceleration from the LO diffusion system. In this paper, we review each 
of these methods. Our computational results support our claim that the choice of which 
nonlinear solver to use, JFNK or NKA, should be secondary. The primary computational 
savings result from the implementation of a HOLO algorithm. We display computational 
results for a series of challenging multi-dimensional test problems.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We are interested in computing the dominant eigenvalue–eigenvector pair, (keff , φ), of the neutron transport k-eigenvalue 
problem [13],

Ω̂ · ∇ψ(Ω̂,�r, E) + Σt(E)ψ(Ω̂,�r, E) = 1

4π

[ ∞∫
0

Σs
(

E ′ → E
)
φ
(�r, E ′)dE ′ + χ(E)

keff

∞∫
0

νΣ f
(

E ′)φ(�r, E ′)dE ′
]
. (1)

The various parameters and variables in Eq. (1) are:

• �r represents a point in R3.
• Ω̂ is a unit vector in R3, represents the direction of neutron travel.
• E represents the neutron energy, E ∈ (0, ∞).
• ψ is the angular flux.
• φ is the zeroth angular moment of ψ , φ = ∫

4π ψ dΩ̂ .
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• Σt , Σs and Σ f are the total, scattering and fission macroscopic cross-sections, respectively.
• ν is the mean number of neutrons produced per fission event.
• χ is the fission neutron energy distribution function.

In order to solve Eq. (1), we apply a multi-group discretization in energy [13]. The resulting equation is given by

Ω̂ · ∇ψg(Ω̂,�r) + Σt,gψg(Ω̂,�r) = 1

4π

[
G∑

g′=1

Σ
g′→g
s φg′(�r) + χg

keff

G∑
g′=1

νΣ f ,g′φg′(�r)
]
, (2)

where

ψg(Ω̂,�r) =
E g−1∫
E g

ψ(Ω̂,�r, E)dE. (3)

We will utilize an Sn quadrature in angle [13], yielding

Ω̂m · ∇ψg,m(�r) + Σt,gψg,m(�r) = 1

4π

[
G∑

g′=1

Σ
g′→g
s φg′(�r) + χg

keff

G∑
g′=1

νΣ f ,g′φg′(�r)
]
, (4)

where

ψg,m = ψg(Ω̂m), (5)

and integration can now be represented

φg =
∑

m

ψg,m wm, (6)

in which {wm} is the set of quadrature weights. We will leave the details of the spatial discretization unspecified, but 
we will utilize either a diamond-difference (DD) or a step-characteristics (SC) discretization in space [13]. The impact of 
alternative choices for spatial discretization on the main results of this study are negligible.

In order to simplify future discussion, we will represent the eigenvalue problem (Eq. (4)) in operator notation,

LΨ = 1

4π

[
S + 1

keff
F

]
Φ,

in which

L = Ω̂ · ∇ + Σt

S = Σs

F = χνΣ f .

In this setting, Ψ and Φ represent vectors of group angular and scalar fluxes, respectively,

Ψ = [ψ1,ψ2, . . . ,ψG ],
Φ = [φ1, φ2, . . . , φG ].

Furthermore, we will define the operator Mi which takes ψ to its ith angular moment,

φ = M0ψ. (7)

The remainder of the paper is organized as follows: In Section 1.1 we will present some preliminary results for a series of 
three one-dimensional test problems as motivation for the rest of the paper. In Section 2 we will present the power iteration 
algorithm [13], which provides a baseline to compare all other methods against. We will follow this with Section 2.1, in 
which we describe using well-known nonlinear solvers to accelerate the solution to the k-eigenvalue problem. In Section 3
we will present the most effective family of methods which we have found for solving the eigenvalue problem, commonly 
referred to as moment-based acceleration methods or HOLO methods. This algorithm is often referred to as nonlinear 
diffusion acceleration (NDA) within the neutronics community [6–8,10,17]. We will then provide a thorough comparison of 
each of these methods in Section 4 and finish the paper by summarizing our findings in Section 5.

One motivation for this study, and paper, comes from [15]. In reference [15], both [8] and [19] are referenced as applying 
JFNK to the transport eigenvalue problem. While this is accurate on some level, it is misleading at the most important level, 
as we will demonstrate. The work in [8] uses NDA to accelerate the scattering source and then uses JFNK to accelerate the 
fission source, but in the LO space. Again, as we will demonstrate, the computational gains made (or lost) by choosing JFNK 
or NKA are minimal when compared to the computational savings of utilizing NDA.
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Table 1
Material properties 1-D test problems.

Property Material 1 Material 2 Material 3

x-range (cm) [0,5] [5, τ − 5] [τ − 5, τ ]
Σt (cm−1) 1 1 1
Σs (cm−1) .856 .856 .856
νΣ f (cm−1) 0 .144 0

Fig. 1. Methods comparison for 1-D k-eigenvalue problem. 15 mfp domain. Dominance ratio is .3018.

1.1. Motivation

In order to motivate the remainder of the paper, let us consider three one-dimensional, one-group test problems as 
described in Table 1. Each of these problems consists of the same basic Reflector-Fissionable-Reflector configuration, the 
only difference is the length of the domain, τ . By increasing τ , the difficulty of the problem increases since the dominance 
ratio approaches one.

For each of these problems, we will consider five methods. As a baseline, we will solve each of these problems using the 
power iteration (PI) algorithm [13]. Then, we will solve each problem using the nonlinear formulation which we will discuss 
in Section 2.1. As nonlinear solvers, we will use both a Jacobian-Free Newton–Krylov (JFNK) method [1–3] and Nonlinear 
Krylov Acceleration (NKA) [15,14,16]. Details of options and settings used for these nonlinear solvers will be discussed 
subsequently. Lastly, we will solve each eigenvalue problem using a HOLO method [8]. We will use both JFNK and NKA as 
LO solvers for comparison purposes. We choose to solve this problem for τ = 15, 35, and 210.

As we can see in Figs. 1–3, as τ increases, so do the number of transport sweeps required by the power iteration 
algorithm. A transport sweep is defined to be the inversion of the operator L, and we will use the number of transport 
sweeps as a measure of computational cost. The number of transport sweeps required are roughly 180, 4000 and 70 000
for increasing values of τ . Using the nonlinear acceleration techniques provides a reduction in transport sweeps by 1 to 
3 orders of magnitude, depending on the dominance ratio of the problem. However, we see that as the dominance ratio 
approaches one, the number of transport sweeps required by HO-JFNK and HO-NKA increases considerably. We find that 
the number of transport sweeps is far less problem dependent for the HOLO method, regardless of problem dominance 
ratio. For each τ , the number of sweeps required by the HOLO method is between 4 and 7. The HOLO represents a 2–15×
speedup over the nonlinear acceleration techniques and a 25–15 000× speedup over power iteration.

We will demonstrate the same behavior in two-spatial dimensions, often to a greater extent. The HOLO methods are the 
most efficient for each of the problems examined. These results are displayed in Section 4.

2. Traditional eigenvalue methods

The fundamental algorithm for solving the neutron transport k-eigenvalue problem is known as “Power Iteration” or 
PI [13]. This method has distinct similarities to the well known “Power Method” from numerical linear algebra, but with a 
couple of subtle differences. The PI algorithm is described in Algorithm 1.
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Fig. 2. Methods comparison for 1-D k-eigenvalue problem. 35 mfp domain. Dominance ratio is .8185.

Fig. 3. Methods comparison for 1-D k-eigenvalue problem. 210 mfp domain. Dominance ratio is .99559.

Eq. (8) represents a fixed-source problem which needs to be solved at each outer iteration. If this fixed-source problem 
is solved exactly, a true power method iteration is achieved. However, it is generally inefficient to solve the fixed-source 
problem to a very tight tolerance. Instead, this problem is usually solved approximately in which the source iteration 
convergence tolerance is relatively loose or we only allow some finite number of source iterations per outer iteration. 
When this is the case, we will write PI (k max) to denote the maximum number of inner iteration per outer iteration.

This algorithm may converge prohibitively slowly to be of any practical use for many problems. It is well known that 
if the fixed-source problem is solved exactly at each outer iteration, the ratio of successive errors approaches ρ = |k2|

|k1| as 
the iteration progresses, in which k1 is the largest eigenvalue and k2 is the second largest eigenvalue in magnitude [13]. 
This ratio, ρ , is known as the dominance ratio. As ρ approaches one, the number of power iterations required to solve the 
eigenvalue problem increases without bound. If the fixed-source problem is solved only approximately, the convergence rate 
can be significantly slower than predicted by the dominance ratio. Furthermore, we know that the scattering ratio dictates 
the convergence rate of each fixed-source problem. The most challenging problems are those which have high scattering 
and dominance ratios.
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Algorithm 1 Power Iteration (PI) algorithm.
Power Iteration

Input Φ0, k0, outer tolerance, inner tolerance, k max.

while |kn+1−kn |
kn+1 > outer tolerance do

while ‖Φn+1,k+1 − Φn+1,k‖ > inner tolerance and k < k max do
Compute new flux via source iteration

LΨ n+1,k+1 = 1

4π
SΦn+1,k + 1

4π

1

keff
FΦn (8)

Φn+1,k+1 =M0Ψ n+1,k+1 (9)

end while
Update Eigenvalue

kn+1 = W T FΦn+1

W T FΦn
kn (10)

in which W T �x represents the numerical integral of �x throughout the domain.
end while

As the scattering ratio helps to determine the difficulty of the problem, reporting only the dominance ratio for a given 
problem is not always an accurate portrayal of problem difficulty. For this reason, we will define a scattering plus domi-
nance ratio, ρs+ f , which is defined to be the limiting ratio of subsequent errors in the eigenvalue when Power Iteration is 
employed using only a single transport sweep per inner iteration. That is,

ρs+ f = |kn+1
PI(1) − k∗|

|kn
PI(1) − k∗| , (11)

where k∗ is the true eigenvalue.
Many real world application problems have both high scattering and dominance ratios. This is typical for light water 

reactor transport eigenvalue problems. For this reason, we need to accelerate standard power iterations. In the remainder 
of this section we will consider applying well-known nonlinear solvers to the eigenvalue problem. We will see that these 
nonlinear solvers applied to a simple reformulation of the problem can yield impressive results in Section 4.

2.1. Nonlinear acceleration of transport criticality problems

Several attempts [14,15,19] to accelerate the solution to the k-eigenvalue problem have considered rewriting the neutron 
transport eigenvalue problem as a system of nonlinear equations. The goal in these attempts is to obtain the quadratic 
convergence afforded by Newton’s method. These problems are generally of the form

F

(
Φ

k

)
=

(
FΦ(Φ,k)

Fk(Φ,k)

)
= 0 (12)

and differ in their definitions of FΦ and Fk .
In [14,15,19], the authors generally write

FΦ(Φ,k) = Φ − P (k)Φ. (13)

One simple definition of P (k) is given by

P1(k) = M0L−1
[

1

4π

(
S + 1

k
F

)]
. (14)

This represents a single transport sweep in which the scattering and fission sources are computed using Φ . A true power 
iteration is given by

Φn+1 = P2
(
kn)Φn (15)

in which

P2
(
kn)Φn = M0

(
L− 1

4π
SM0

)−1 1

4πkn
FΦn. (16)

We generally avoid iterations involving operators like P2, as it involves a full inversion of the transport plus scattering 
operator, that is, the solution to a fixed-source transport problem. This can be exceptionally expensive, especially when the 
scattering ratio is close to unity. The advantage of the P1 operator is that it only requires a single transport sweep (inversion 
of L) per application.
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The authors of [15] consider the following nonlinear function for k,

Fk(Φ,k) =
(

1 − W T F P (k)Φ

W T FΦ

)
k, (17)

in which W T represent a weighted numerical integral over the spatial domain.
Given this formulation of the problem, we can apply any nonlinear solver to compute F = 0. The usual candidates for 

nonlinear solvers are Newton’s method [1–3] or Nonlinear Krylov Acceleration (NKA) [14–16]. Standard Newton’s method 
implementations are usually Jacobian-free, in which the Jacobian-vector product is computed using a traditional finite dif-
ference. The resulting linear system is solved using an appropriate Krylov method, generally GMRES (see Algorithm 2). One 
significant advantage of NKA, Algorithm 3, is that one never needs to compute the Jacobian or a Jacobian-vector product. 
With NKA, only the nonlinear function evaluation is required.

Algorithm 2 Jacobian-Free Newton–Krylov (JFNK) algorithm.
JFNK

Input initial iterate x0, η ∈ (0, 1).
Set n = 0.
while F (xn) > tolerance do

Compute Newton step s satisfying∥∥F ′(xn)s + F (xn)
∥∥ < η

∥∥F (xn)
∥∥ (18)

by solving

F ′(xn)s = −F (xn) (19)

with GMRES.
Compute next iterate xn+1

xn+1 = xn + s. (20)

Set n = n + 1.
end while

Algorithm 3 Nonlinear Krylov Acceleration (NKA) algorithm.
NKA

Input initial iterate x0, history length M .
Set x1 = x0 − F (x0)

Set n = 1.
while F (xn) > tolerance do

Compute NKA Update

�vn+1 =
n∑

i=n−M+1

z(n)
i �vi +

(
F (xn) −

n∑
i=n−M+1

z(n)
i �wi

)
(21)

�vi = xi−1 − xi (22)

�wi = F (xi−1) − F (xi) (23)

�z(n) = arg min
y∈RM

∥∥∥∥∥F (xn) −
m∑

i=n−M+1

yi �wi

∥∥∥∥∥ (24)

and

xn+1 = xn + vn+1. (25)

Set n = n + 1.
end while

Before moving on, it should be noted that using this formulation of the problem, there is no guarantee that Newton’s 
method or NKA will converge to the dominant eigenpair. This function, as it is written, has a solution for each eigen-
value/eigenvector pair. It was observed in [19] that Newton’s method would often converge to a non-dominant eigenpair.

2.2. Nonlinear elimination of the eigenvalue

As with any eigenvalue problem,

Ax = λx, (26)
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if (λ∗, x∗) is an eigenvalue–eigenvector pair, then so is (λ∗, cx∗). When numerical techniques are employed to compute 
the eigenvalue–eigenvector pair, we must put a constraint on the magnitude of x∗ in order to obtain a unique solution. 
Commonly, we demand that∥∥x∗∥∥ = 1, (27)

however this is purely for convenience – any sensible constraint will do.
For the neutron transport k-eigenvalue problem, we often find it convenient to place a constraint on the eigenvalue–

eigenvector pair so that

k =
∫ ∫

νΣ f φ dV dE (28)

in which 
∫∫ · dV dE represents an integral over the spatial and energy domains. Employing this scaling factor, we can elimi-

nate k as an input to the nonlinear function F . We can now write

F (Φ) = Φ − P
(
k(Φ)

)
Φ, (29)

in which k, a function of Φ , is computed via the constraint equation,

k(φ) =
∫ ∫

νΣ f φ dV dE. (30)

We will use this nonlinear formulation of the eigenvalue problem for all of our numerical tests (JFNK-HO or NKA-HO).

3. HOLO methods

HOLO [5] methods have been shown to be highly efficient in several different application areas including neutron-
ics [5,6], thermal radiative transfer [22] and kinetic plasma physics [21]. These methods are occasionally referred to as 
“Moment-Based Acceleration” techniques and the reader should recognize these acceleration techniques as one and the 
same.

These methods accelerate solution convergence by alternating between solving a HO kinetic equation and a LO system of 
moment equations which are forced to remain discretely consistent (down to the level of truncation error) with the original 
system. Some view HOLO methods as (physics-based) multi-level methods: the transport sweep helps to relax the transport 
error modes, while the LO system helps to relax the diffusion error mode.

In neutron transport, we take angular moments of the multi-group transport equation which yields a system of multi-
group diffusion-like equations which are dependent only on the spatial variable, �r , and energy, E . The dimensionality of 
this LO problem is significantly smaller and therefore, the low order system is far less expensive to solve. While there are 
variants on the HOLO method, such as [4], we will exclusively consider nonlinear diffusion acceleration (NDA) [5,6,8]. We 
derive these equations in the following section.

3.1. Deriving the NDA LO equation

As in [6–8,10], we begin by computing the zeroth angular moment of Eq. (4),

∇ · �J g + (
Σt,g − Σ

g→g
s

)
φg =

∑
g′ 
=g

Σ
g′→g
s φg′ + χg

keff

G∑
g′=1

νΣ f ,g′φg′ , (31)

in which the current, �J , is defined as the first angular moment,

�J g(�r) =
∫

4π

Ω̂ψg(Ω̂,�r)dΩ̂ = M1ψg . (32)

We refer to Eq. (31) as the neutron balance equation. As in [6–8,10], we use a Fick’s law plus drift term closure relationship 
for the current,

�J g = − 1

3Σt,g
∇φg + D̂ gφg . (33)

Substituting Eq. (33) into Eq. (31) yields the NDA LO system,

∇ ·
[
− 1

3Σt,g
∇φg + D̂ gφg

]
+ (

Σt,g − Σ
g→g
s

)
φg =

∑
′

Σ
g′→g
s φg′ + χg

keff

G∑
′

νΣ f ,g′φg′ . (34)

g 
=g g =1
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The consistency term, D̂ g , is computed using HO quantities of the scalar flux, φHO
g , and current, �J HO

g , via

D̂ g =
�J HO

g + 1
3Σt,g

∇φHO
g

φHO
g

. (35)

These HO moments are computed directly via integration of the HO angular flux, which is the results of a single HO 
transport sweep. That is,

Ψ = 1

4π
L−1

[
S + 1

keff
F

]
Φ,

ΦHO = M0Ψ

�J HO = M1Ψ.

It is important to note that the discretization used when computing D̂ must be consistent with the LO discretization in 
order to obtain discrete consistency.

We will express Eq. (34) in operator notation as well,

DΦ = (SU + SL)Φ + 1

keff
FΦ, (36)

in which

DgΦ = ∇ ·
[
− 1

3Σt,g
∇ + D̂ g

]
φg + (

Σt,g − Σ
g→g
s

)
φg,

(SU ,g + SL,g)Φ =
∑
g′ 
=g

Σ
g′→g
s φg′ .

Solving this LO system is preferable to solving the HO system in the sense that we can handle the scattering operator 
implicitly. When executing transport sweeps, this scattering term must be lagged at the previous iterate. Furthermore, the 
dimensionality of the LO problem is considerably smaller than that of the HO problem.

3.2. NDA-based eigenvalue methods

When we apply NDA to the neutron transport k-eigenvalue problem [6,8] it yields a set of algorithms in which we 
alternate between executing HO transport sweeps and solving the LO eigenvalue problem (Eq. (34)). These methods differ 
only in the way in which the LO eigenvalue problem is solved. We have described the methods formally in Algorithm 4.

Algorithm 4 NDA.
Nonlinear Diffusion Acceleration

Compute initial iterate Φ(0) , initial eigenvalue approximation k0. Set iteration counter m = 0.
while |km − km−1| > τ do

Update counter, m = m + 1.
Execute transport sweep and compute new consistency term

Ψ (m) = 1

4π
L−1

(
S + 1

km−1
F

)
Φ(m−1), (37)

ΦHO =
∫

Ψ (m)dΩ̂, (38)

�J HO =
∫

Ω̂Ψ (m)dΩ̂, (39)

D̂(m) =
�J HO + 1

3Σt
∇ΦHO

ΦHO
. (40)

Solve the LO eigenvalue problem for Φ(m) and km

(
D(m) −SU −SL

)
Φ(m) = 1

k(m)
FΦ(m). (41)

end while

We can solve the LO eigenvalue problem using a variety of methods. If we apply a simple power iteration, we refer to 
the resulting method as NDA-PI. When a nonlinear solver is used to accelerate the solution to the LO problem, we refer 
to the method as NDA-NCA for nonlinear criticality acceleration. NDA-NCA was originally designed with the use of JFNK in 
mind as the LO solver (NDA-NCA-JFNK) [8,7,10], but has since been adapted to utilize either JFNK or NKA (NDA-NCA-NKA).
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Fig. 4. LRA-BWR material layout.

When a nonlinear solver is applied, we re-write the LO problem as a nonlinear equation

FΦ(Φ) = (D − SU − SL)Φ − 1

k(Φ)
FΦ in which (42)

k(Φ) =
G∑

g=1

∫
dV νΣ f ,gφg . (43)

We now apply either JFNK or NKA to solve F (Φ) = 0 in which k has been nonlinearly eliminated. For the purpose of this 
paper, we will not concern ourselves with details regarding the solution to the LO eigenvalue problem beyond the choice of 
nonlinear solvers. For a more in-depth treatment of the solution to the LO eigenvalue problem, see [8,10]. We precondition 
the linear solve with the inverse of the matrix

M = D − SL − 1

km−1
F . (44)

Here, k has been lagged to the previous iterate of k and the up-scattering, SU , operator has been ignored. Ignoring the 
up-scattering operator ensures that M is block triangular and efficient to invert.

We should also note that a multilevel NDA method has been developed for computing the dominant eigenvalue–
eigenvector pair in [17]. The method we have described is a “single-level” NDA, in which the transport equation is 
accelerated by a multi-group diffusion-like system. In [17], a second level of acceleration is applied by reducing the multi-
group diffusion equations to a single-group diffusion equation. While [17] reports positive results, we will not discuss it 
here as it would only serve to cloud the current discussion. Interested readers should look to [17] directly.

4. Results

In this section we will consider two well-known 2-D quarter-core problems, the LRA-BWR problem [11,12] and the 
C5G7MOX problem [20]. For each test, we will use an S16 angular quadrature. The LRA-BWR problem is a 2 group problem. 
For each of the following LRA-BWR test runs, we will use a 352 × 352 mesh, unless otherwise noted. On this mesh, the 
dominance ratio, ρ , is above 0.97, and the scattering plus dominance ratio is roughly 0.993. The C5G7MOX problem is a 7 
group problem. For the C5G7MOX problem we will utilize a 357 × 357 mesh for each test run. The dominance ratio for this 
problem is much smaller, roughly 0.77, however the scattering plus dominance ratio is about 0.989.

The material configuration for the LRA-BWR problem is displayed in Fig. 4 and the material configuration for the 
C5G7MOX problem is displayed in Fig. 5.

The C5G7MOX problem contains significant upscattering within the thermal groups. This often has the impact of making 
the linear solve moderately more expensive, as we usually ignore upscattering in the preconditioner.

In the following four subsections, we will look at a series of studies which consider each of the methods discussed above. 
We will solve the HO problem with both JFNK and NKA. As the performance of both of these algorithms rely on a set of 
tunable parameters, we will solve each problem a series of times with different parameter sets. Finally, we will solve each 
problem using the HOLO algorithm using both JFNK and NKA as LO solvers. We use an implementation of NKA as described 
in [15] which the authors provide at http :/ /sourceforge .net /projects /nlkain/.

http://sourceforge.net/projects/nlkain/
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Fig. 5. C5G7MOX material layout [20].

Table 2
HO-JFNK parameter study.

η Max Krylovs Sweeps

LRA-BWR C5G7MOX

.001 15 1631 204

.01 15 2882 174

.1 15 2016 152

.001 30 503 179

.01 30 1030 155

.1 30 453 125

.001 150 337 165

.01 150 308 154

.1 150 314 166

For each of the HOLO algorithms (NDA-NCA and NDA-PI) we compute our initial iterate by solving the diffusion eigen-
value problem. This amounts to solving the LO problem in which D̂ in Eq. (34) is taken to be zero everywhere. This provides 
a better initial guess than using a flat source. For JFNK-HO and NKA-HO we begin with 5 initial power iterations. This helps 
to ensure the solution converges to dominant eigenpair.

4.1. JFNK-HO parameter study

The convergence of a Jacobian-Free Newton–Krylov algorithm depends both on the difficulty of the problem at hand as 
well as the choice of values for a few key parameters [1,2]. These parameters include the forcing term, η, the maximum 
number of vectors in the Krylov basis, and the maximum number of times GMRES is allowed to restart.

Often times the maximum number of vectors in the Krylov basis is not a choice at all. It is an upper limit defined by 
the memory storage requirements of keeping around the basis. When the numerical problem becomes large (in terms of 
degrees of freedom), we may only be able to store a few Krylov vectors. GMRES usually performs best when restarts are 
not required, and convergence degrades when the size of the Krylov subspace must remain small. The key to good JFNK 
performance with a minimal number of Krylov vectors is quality preconditioning.

In Table 2 we present results of a JFNK parameter study for both the LRA-BWR and C5G7MOX problems. We allow 
constant η = .1, .01 and .001 and allow the maximum number of Krylov vectors before restart to take on values of 15, 30 
and 150. We allow a total of 150 GMRES iterates regardless of the basis size. In later sections, we will write HO-JFNK (η, K )

to denote JFNK applied to the HO problem, Eq. (29), with forcing parameter η and a maximum storage of K Krylov vectors. 
We compare performance in terms of transport sweeps, as this is by far the dominant computational cost.

Here we see that the results for the LRA-BWR problem are very sensitive to the choice of the maximum number of Krylov 
vectors stored. This demonstrates that, as expected, the linear solve required by Newton’s method can be very challenging 
for this problem. When only 15 Krylov vectors are stored, the linear iteration converges very slowly – this points at the 
need for a good preconditioner. The C5G7MOX problem is much less challenging and we see less of a dependence on the 
choice of parameters. The convergence is less sensitive to the η parameter.
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Table 3
HO-JFNK vs. HO-NKA study.

Method Sweeps

LRA-BWR C5G7MOX

HO-JFNK(.1, 15) 2016 152
HO-JFNK(.001, 30) 503 179
HO-JFNK(.1, 30) 453 125
HO-JFNK(.01, 150) 308 154
HO-JFNK(.1, 150) 314 166
HO-NKA(15) 301 121
HO-NKA(30) 262 168

Table 4
NDA-NCA mesh study.

Mesh size Sweeps keff Error Order

JFNK NKA

0.46875 5 6 1.0014486 2.541 × 10−6 –
0.3125 5 5 1.0014499 1.025 × 10−6 1.97
0.234375 6 5 1.0014503 5.617 × 10−7 2.09
0.1875 6 5 1.0014505 3.598 × 10−7 2.00
0.15625 5 5 1.0014507 2.496 × 10−7 2.00

These results highlight two distinct issues with using Newton’s method applied directly to the HO problem. First, we 
do not have an adequate preconditioner for the nonlinear HO problem. This makes JFNK a potentially poor choice, as the 
Krylov solve may consume a considerable number of transport sweeps. Secondly, we have demonstrated that it may be 
very challenging to pick the appropriate parameters for JFNK a priori. This can lead to a factor of 2 or 3 more work than 
necessary.

4.2. JFNK-HO vs. NKA-HO study

In this section we will consider JFNK and NKA applied to the HO problem. These results are presented in Table 3. For 
NKA, we will use the variant referred to as NKA1 from Ref. [15] for all tests. This means we must only vary the number of 
vectors stored, m. We will present results for NKA (m) and a selection of results from Table 2.

For both the LRA-BWR and C5G7MOX problems we find that NKA is a superior choice when applied directly to the HO 
problem. When storage is an issue and only a few Krylov vectors can be stored, NKA is the preferable choice. This choice has 
less dramatic effects for the easier C5G7MOX problem, but the results for the LRA-BWR problem are clear. Unless one can 
afford to keep around a substantial number of Krylov vectors, NKA is the better choice. Additionally, one does not need to 
worry about the potentially costly choice of choosing the wrong value for η when using NKA. In addition, because NKA does 
not require the computation or approximation of a Jacobian, we don’t need to worry about finite-difference perturbations 
which contain negative components.

4.3. Mesh convergence study

In Table 4, we solve the LRA-BWR problem on a series of meshes to demonstrate the independence of the number of 
iterations on the mesh size when using the NDA-NCA method and to demonstrate the second-order accuracy of the DD 
spatial discretization method. Each problem is solved to a tolerance of 10−7. The error is computed against a reference 
solution on a refined mesh.

In Table 4 we see that NDA-NCA-JFNK and NDA-NCA-NKA perform comparably for this problem on each mesh – the 
difference on any mesh is at most one iteration. We see in this table how efficient NDA-NCA can be and will demonstrate 
these results again in Tables 6 and 8 in the following section.

In Table 5 we perform the same study using NKA applied to the HO problem. The eigenvalues obtained coincide with 
the data from Table 4, however we notice that vastly more sweeps are required when using HO-NKA.

Also, from the acquired data, it appears that NKA is somewhat sensitive to the size of the mesh. We see between 234 
and 403 transports sweeps required to satisfy the convergence criterion on a variety of meshes. Contrast this with Table 4
in which NDA-NCA performs comparably on every mesh. This trait of NDA-NCA is highly desirable – we know that we can 
pick a mesh to satisfy our accuracy requirements and the algorithm performance will not be affected.

4.4. HOLO vs. HO study

In this final results section we wish to demonstrate the superior performance of the NDA-NCA and NDA-PI HOLO algo-
rithms in direct comparison with either JFNK or NKA applied directly to the HO problem. We provide results using PI as 
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Table 5
HO-NKA(15) mesh study.

Mesh size Sweeps keff Error Order

0.937500 296 1.0014417 9.210 × 10−6 –
0.468750 301 1.0014486 2.280 × 10−6 2.01
0.312500 300 1.0014499 1.025 × 10−6 1.97
0.234375 403 1.0014503 5.617 × 10−7 2.09
0.187500 294 1.0014505 3.598 × 10−7 2.00
0.156250 234 1.0014507 2.496 × 10−7 2.00

Table 6
LRA-BWR: HO methods vs. HOLO methods.

Method Sweeps Time (s) HO time (s) LO time (s) Factor

NDA-NCA-JFNK 5 115.04 46.04 69.00 1.00
NDA-NCA-NKA 5 140.88 46.02 94.86 1.22
NDA-PI 7 987.62 64.53 923.09 8.59
HO-JFNK(.001, 30) 503 4687.32 4687.32 – 40.75
HO-JFNK(.01, 150) 308 2893.14 2893.14 – 25.15
HO-NKA(15) 301 2768.65 2768.65 – 24.07
HO-NKA(30) 262 2410.32 2410.32 – 20.95
PI(1) 9754 89 795.33 89 795.33 – 780.56
PI(10) 12 501 115 084.21 115 084.21 – 1000.38

Table 7
LRA-BWR: HOLO methods cost breakdown.

Method Sweeps LO func. evals. Precond. const. Precond. app.

NDA-NCA-JFNK 5 177 15 147
NDA-NCA-NKA 5 187 172 172
NDA-PI 7 1920 – –

Table 8
C5G7MOX: HO methods vs. HOLO methods.

Method Sweeps Time (s) HO time (s) LO time (s) Factor

NDA-NCA-JFNK 6 535.48 214.92 320.56 1.00
NDA-NCA-NKA 6 635.52 214.71 420.81 1.19
NDA-PI 13 2599.61 469.37 2130.24 4.85
HO-JFNK(.001, 30) 179 6512.52 6512.52 – 12.16
HO-JFNK(.01, 150) 154 5620.18 5620.18 – 10.50
HO-NKA(15) 121 4500.79 4500.79 – 8.41
HO-NKA(30) 168 6180.89 6180.89 – 11.54
PI(1) 1454 56 387.71 56 387.71 – 105.30
PI(10) 1970 72 851.56 72 851.56 – 136.05

a baseline comparison. The results are definitive for both the LRA-BWR and C5G7MOX problems as we saw in the earlier 
1-D motivating problem. Here, we present results in terms of compute time, in addition to transport sweeps, as the LO solve 
time is small, but not negligible. In the HOLO approach the method is very effective at reducing transport sweeps and thus 
the LO compute time can dominate.

In Tables 6 and 8 we see that at worst, NDA-NCA is an 8× improvement over HO-JFNK or HO-NKA and at times over 
a 40× improvement. This improvement is the direct result of moving a large portion of the computational work to the LO 
space. While we do incur some cost in solving the LO eigenvalue problems, this cost is completely offset by reducing the 
number of transport sweeps by a factor of 20–100 times. We only compare the NDA-NCA results against a selection of the 
best-performing HO-JFNK and HO-NKA results in these tables. It is also important to note that within the HOLO context, 
the choice of which LO nonlinear solver to use is insignificant. Both JFNK and NKA perform well. In the case of NDA-NCA, 
we have an excellent preconditioner for the LO nonlinear problem. This allows us to keep the number of Krylov vectors 
small. For the LRA-BWR problem, we see between 9 and 16 Krylov vectors per Newton step and between 10 and 12 vectors 
for the C5G7MOX problem. Contrast with the 150 GMRES iterations often required by HO-JFNK. We find that the C5G7MOX 
problem is a bit more expensive than the LRA-BWR problem to solve for roughly the same number of spatial cells. This is 
entirely attributed to the difference in the number of energy groups and the presence of upscattering.

While HO-JFNK, HO-NKA and NDA-NCA accelerate the solution to the eigenvalue problem, they do so in dramatically 
different ways. HO-JFNK and HO-NKA accelerate both the fission and scattering sources within the HO problem. Either 
Newton’s method or NKA is used to provide this acceleration. In the case of NDA-NCA, both the scattering and fission sources 
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Table 9
C5G7MOX: HOLO methods cost breakdown.

Method Sweeps LO func. evals. Precond. const. Precond. app.

NDA-NCA-JFNK 6 282 16 250
NDA-NCA-NKA 6 244 228 228
NDA-PI 13 2139 – –

are accelerated via the inclusion of the LO system. The LO system (NDA) allows for the implicit treatment of the scattering 
source. In this case, either Newton’s method or NKA is used to accelerate the solution to the LO eigenvalue problem, hence 
accelerating the fission source. Each LO function evaluation is considerably less expensive than a HO function evaluation, as 
each HO function evaluation contains a transport sweep, which is often the most considerable cost in solving the neutron 
transport eigenvalue problem.

It is important to note that there is a small, yet noticeable, difference in the amount of time required to solve the LO 
problem by JFNK and NKA. This difference can be partially attributed to the difference in the number of function evaluations 
required to solve the LO problem. This difference does not imply JFNK is necessarily more efficient than NKA. When using 
Newton’s method, we generally terminate the LO solve after a single Newton step. It is difficult to define an equivalent 
amount of work for NKA.

Furthermore, in Tables 7 and 9 we present the number of LO function evaluations, preconditioner constructions and 
preconditioner applications. One of the other reasons in which JFNK is a more efficient LO solver is that it only requires 
one preconditioner construction per Newton step. On the other hand, NKA requires one preconditioner construction (and 
application) for each LO function evaluation until the convergence criteria has been satisfied. In Table 9 we see that NKA 
actually required fewer function evaluations, but many more matrix constructions. These matrix constructions can be a 
significant cost for the seven group eigenvalue problem.

5. Conclusion

In this paper we have compared a variety of methods for solving the neutron transport k-eigenvalue problem. We 
presented results from [9,18] which demonstrate that the eigenvalue problem can be rewritten as a nonlinear function 
which can be solved using JFNK or NKA. Our results support the conclusions in [15] that NKA is generally more efficient at 
solving this nonlinear formulation of the HO problem. Subsequently, we described the NDA-NCA HOLO method for solving 
the k-eigenvalue problem which was originally described in [8]. This method uses a sequence of LO diffusion-like eigenvalue 
problems to accelerate the solution to the original HO transport problem. By moving a large portion of the work to this LO 
computational space, we can reduce the overall work considerably.

While both JFNK and NKA applied directly to the HO problem can accelerate the solution dramatically compared to a 
standard power iteration, they are significantly more expensive when compared to the NDA-NCA algorithm. The NDA-NCA 
algorithm performance is independent of mesh and is less sensitive to choices of parameters in either JFNK or NKA. Within 
NDA-NCA we can easily precondition the solution to the LO problem which sets it even further apart from the accelerated 
HO methods. For both the C5G7MOX and LRA-BWR test problems, we find that the NDA-NCA algorithm is always the most 
efficient method, often by a factor of 10–40 times.
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