Fast Operations Involving the Matrix $\left|t_{i}-t_{j}\right|$

George B. Rybicki

4 March 1998

1 Theory

This note is concerned with finding the inverse of the symmetric matrix Ψ, with components

$$
\begin{equation*}
\Psi_{i j}=\left|t_{i}-t_{j}\right| \tag{1}
\end{equation*}
$$

where the values $t_{i}, i=1,2,3, \ldots, n$, are all distinct. This problem arises in the statistical treatment of time series, related to the "random walk" process.

We assume that the sequence t_{i} is given in strict ascending order, $t_{1}<$ $t_{2}<\ldots t_{n}$ (if not true initially, this can be arranged by simple relabelling of the indices). Using the monotonicity of the t_{i}, the matrix can be written,

$$
\Psi=\left(\begin{array}{ccccc}
0 & t_{2}-t_{1} & t_{3}-t_{1} & \ldots & t_{n}-t_{1} \tag{2}\\
t_{2}-t_{1} & 0 & t_{3}-t_{2} & \ldots & t_{n}-t_{2} \\
t_{3}-t_{1} & t_{3}-t_{2} & 0 & \ldots & t_{n}-t_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
t_{n}-t_{1} & t_{n}-t_{2} & t_{n}-t_{3} & \ldots & 0
\end{array}\right)
$$

It can be shown that the inverse of Ψ may be expressed in the form

$$
\begin{equation*}
\Gamma=\Psi^{-1}=\mathbf{T}+\mu \mathbf{L} \mathbf{L}^{T} \tag{3}
\end{equation*}
$$

where \mathbf{T} is a symmetric tridiagonal matrix, and \mathbf{L} is a column vector consisting of zeroes, except for the first and last elements, which are unity. In
particular,

$$
\mathbf{T}=\left(\begin{array}{cccccc}
d_{1} & e_{1} & 0 & \ldots & 0 & 0 \tag{4}\\
e_{1} & d_{2} & e_{2} & \ldots & 0 & 0 \\
0 & e_{2} & d_{3} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & d_{n-1} & e_{n-1} \\
0 & 0 & 0 & \ldots & e_{n-1} & d_{n}
\end{array}\right), \quad \mathbf{L}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right) .
$$

where e_{i} and d_{i} are given by

$$
\begin{equation*}
e_{i}=\frac{1}{2}\left(t_{i+1}-t_{i}\right)^{-1}, \quad 1 \leq i \leq n-1, \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
d_{1} & =-e_{1} \tag{6}\\
d_{i} & =-e_{i}-e_{i-1}, \quad 2 \leq i \leq n-1, \tag{7}\\
d_{n} & =-e_{n-1}, \tag{8}
\end{align*}
$$

and where μ is given by

$$
\begin{equation*}
\mu=\frac{1}{2}\left(t_{n}-t_{1}\right)^{-1} . \tag{9}
\end{equation*}
$$

The inverse can also be written in the form

$$
\Gamma=\Psi^{-1}=\left(\begin{array}{cccccc}
d_{1}+\mu & e_{1} & 0 & \ldots & 0 & \mu \tag{10}\\
e_{1} & d_{2} & e_{2} & \ldots & 0 & 0 \\
0 & e_{2} & d_{3} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & d_{n-1} & e_{n-1} \\
\mu & 0 & 0 & \ldots & e_{n-1} & d_{n}+\mu
\end{array}\right)
$$

which is seen to be a tridiagonal matrix, modified by the addition of μ to each of the four "corner" elements.

We remark that these results can be trivially generalized to the case of the scaled matrix $S_{i j}=\alpha\left|t_{i}-t_{j}\right|$, where α is a constant. All elements of the inverse matrix (i.e., the d_{i}, e_{i}, and μ) are then simply scaled by the factor α^{-1}.

The above results, especially the representation (3) for the inverse of Ψ, permit a number of "fast," $O(n)$ matrix operations involving Ψ. We present three such operations:

1. There is a fast solution of the linear system

$$
\begin{equation*}
\mathbf{y}=\Psi \mathbf{x} \tag{11}
\end{equation*}
$$

for \mathbf{x} given \mathbf{y}, namely,

$$
\begin{equation*}
\mathbf{x}=\left(\mathbf{T}+\mu \mathbf{L} \mathbf{L}^{T}\right) \mathbf{y}=\mathbf{T} \mathbf{y}+\mu\left(\mathbf{L}^{T} \mathbf{y}\right) \mathbf{L} \tag{12}
\end{equation*}
$$

which involves only $O(n)$ operations.
2. There is a fast evaluation of the direct product $\mathbf{y}=\Psi \mathbf{x}$ itself, a kind of fast "convolution." In this case we write

$$
\begin{equation*}
\mathbf{y}=\left(\mathbf{T}+\mu \mathbf{L} \mathbf{L}^{T}\right)^{-1} \mathbf{x} \tag{13}
\end{equation*}
$$

Using the Lemma in Appendix A, we have

$$
\begin{equation*}
\mathbf{y}=\mathbf{u}-\frac{\mu \mathbf{L}^{T} \mathbf{u}}{1+\mu \mathbf{L}^{T} \mathbf{v}} \mathbf{v} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{u}=\mathbf{T}^{-1} \mathbf{x}, \quad \mathbf{v}=\mathbf{T}^{-1} \mathbf{L} \tag{15}
\end{equation*}
$$

3. The following matrix evaluation is often required in practice,

$$
\begin{equation*}
\mathbf{w}=(\Psi+\mathbf{N})^{-1} \mathbf{y} \tag{16}
\end{equation*}
$$

where \mathbf{N} is a diagonal matrix and \mathbf{y} is a column vector. This can also be written

$$
\begin{equation*}
\mathbf{w}=\mathbf{N}^{-1}\left(\mathbf{N}^{-1}+\Psi^{-1}\right)^{-1} \Psi^{-1} \mathbf{y} \tag{17}
\end{equation*}
$$

Noting that $\left(\mathbf{N}^{-1}+\Psi^{-1}\right)^{-1}\left(\mathbf{N}^{-1}+\Psi^{-1}\right)=\left(\mathbf{N}^{-1}+\Psi^{-1}\right)^{-1} \mathbf{N}^{-1}+$ $\left(\mathbf{N}^{-1}+\Psi^{-1}\right)^{-1} \Psi^{-1}=1$, we have

$$
\begin{equation*}
\mathbf{w}=\mathbf{N}^{-1}\left[1-\left(\mathbf{N}^{-1}+\Psi^{-1}\right)^{-1} \mathbf{N}^{-1}\right] \mathbf{y} \tag{18}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{w}=\mathbf{N}^{-1} \mathbf{y}-\mathbf{N}^{-1}\left(\mathbf{N}^{-1}+\mathbf{T}+\mu \mathbf{L} \mathbf{L}^{T}\right)^{-1} \mathbf{N}^{-1} \mathbf{y} \tag{19}
\end{equation*}
$$

Since $\mathbf{N}^{-1}+\mathbf{T}$ is tridiagonal, this can be evaluated using the fast method of the Lemma in the Appendix.

A A Useful Lemma

Lemma 1 Let \mathbf{T} be a tridiagonal matrix and let \mathbf{U}, \mathbf{V}, and \mathbf{x} be column vectors. Then

$$
\begin{equation*}
\left(\mathbf{T}+\mathbf{U V}^{T}\right)^{-1} \mathbf{x}=\mathbf{A}-\frac{\mathbf{V}^{T} \mathbf{A}}{a+\mathbf{V}^{T} \mathbf{B}} \mathbf{B}, \quad \text { where } \quad \mathbf{A}=\mathbf{T}^{-1} \mathbf{x}, \quad \mathbf{B}=\mathbf{T}^{-1} \mathbf{U} \tag{20}
\end{equation*}
$$

which can be evaluated in $O(n)$ operations.
Proof The Sherman-Morrison formula is

$$
\begin{equation*}
\left(\mathbf{T}+\mathbf{U} \mathbf{V}^{T}\right)^{-1}=\mathbf{T}^{-1}-\mathbf{T}^{-1} \mathbf{U}\left(1+\mathbf{V}^{T} \mathbf{T}^{-1} \mathbf{U}\right)^{-1} \mathbf{V}^{T} \mathbf{T}^{-1} \tag{21}
\end{equation*}
$$

Application of this immediately gives the stated result (20). Since this formula involves only two tridiagonal solutions and two scalar products, this is a "fast" process, involving only $O(n)$ operations. •

